Inter- and Intra-Subject Transfer Reduces Calibration Effort for High-Speed SSVEP-Based BCIs

校准 计算机科学 主题(文档) 脑-机接口 传输(计算) 人工智能 语音识别 脑电图 心理学 神经科学 数学 统计 图书馆学 并行计算
作者
Chi Man Wong,Ze Wang,Boyu Wang,Ka Fai Lao,Agostinho Rosa,Peng Xu,Tzyy‐Ping Jung,C. L. Philip Chen,Feng Wan
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 2123-2135 被引量:70
标识
DOI:10.1109/tnsre.2020.3019276
摘要

Objective: Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that can deliver a high information transfer rate (ITR) usually require subject's calibration data to learn the class- and subject-specific model parameters (e.g. the spatial filters and SSVEP templates). Normally, the amount of the calibration data for learning is proportional to the number of classes (or visual stimuli), which could be huge and consequently lead to a time-consuming calibration. This study presents a transfer learning scheme to substantially reduce the calibration effort. Methods: Inspired by the parameter-based and instance-based transfer learning techniques, we propose a subject transfer based canonical correlation analysis (stCCA) method which utilizes the knowledge within subject and between subjects, thus requiring few calibration data from a new subject. Results: The evaluation study on two SSVEP datasets (from Tsinghua and UCSD) shows that the stCCA method performs well with only a small amount of calibration data, providing an ITR at 198.18±59.12 (bits/min) with 9 calibration trials in the Tsinghua dataset and 111.04±57.24 (bits/min) with 3 trials in the UCSD dataset. Such performances are comparable to those from using the multi-stimulus CCA (msCCA) and the ensemble task-related component analysis (eTRCA) methods with the minimally required calibration data (i.e., at least 40 trials in the Tsinghua dataset and at least 12 trials in the UCSD dataset), respectively. Conclusion: Inter- and intra-subject transfer helps the recognition method achieve high ITR with extremely little calibration effort. Significance: The proposed approach saves much calibration effort without sacrificing the ITR, which would be significant for practical SSVEP-based BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WHY发布了新的文献求助10
刚刚
croco完成签到,获得积分10
1秒前
2秒前
2秒前
Dreamable发布了新的文献求助10
2秒前
Disguise发布了新的文献求助200
2秒前
frankk发布了新的文献求助10
2秒前
wwwww发布了新的文献求助10
2秒前
科研通AI5应助花花采纳,获得10
3秒前
阿希发布了新的文献求助10
3秒前
迷路的秋完成签到,获得积分20
3秒前
竹筏过海应助最重中之重采纳,获得30
4秒前
PLAGH221发布了新的文献求助10
5秒前
5秒前
5秒前
在水一方应助加贝采纳,获得10
7秒前
wanci应助莫小烦采纳,获得10
7秒前
7秒前
jinzhao完成签到 ,获得积分10
7秒前
HMQ完成签到,获得积分20
7秒前
无花果应助陌路孤星采纳,获得10
7秒前
痞子毛完成签到,获得积分10
8秒前
雪白的从灵完成签到,获得积分10
9秒前
glassysky完成签到,获得积分10
9秒前
9秒前
11111发布了新的文献求助10
9秒前
华仔应助Dreamable采纳,获得10
9秒前
10秒前
橙子雨完成签到 ,获得积分10
11秒前
11秒前
香蕉觅云应助Yolen LI采纳,获得10
12秒前
12秒前
故意的雨南完成签到,获得积分10
12秒前
科研通AI5应助2025alex采纳,获得10
13秒前
共享精神应助nana湘采纳,获得10
14秒前
HX3275发布了新的文献求助10
14秒前
Jasper应助盖伊福克斯采纳,获得10
14秒前
lxxxxxe发布了新的文献求助20
14秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652998
求助须知:如何正确求助?哪些是违规求助? 3217014
关于积分的说明 9715124
捐赠科研通 2924764
什么是DOI,文献DOI怎么找? 1601863
邀请新用户注册赠送积分活动 754699
科研通“疑难数据库(出版商)”最低求助积分说明 733167