Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images

皮肤病科 医学 计算机科学 深度学习 皮肤损伤 人工智能
作者
Luis R. Soenksen,Timothy Kassis,Susan Conover,Berta Martí-Fuster,Judith Birkenfeld,Jason M. Tucker-Schwartz,Asif Naseem,Robert Stavert,Caroline C. Kim,Maryanne M. Senna,J.A. Avilés-Izquierdo,James J. Collins,Regina Barzilay,Martha L. Gray
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:13 (581) 被引量:109
标识
DOI:10.1126/scitranslmed.abb3652
摘要

A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to improved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic value, efficient tools for SPL detection are mostly absent. To bridge this gap, we developed an SPL analysis system for wide-field images using deep convolutional neural networks (DCNNs) and applied it to a 38,283 dermatological dataset collected from 133 patients and publicly available images. These images were obtained from a variety of consumer-grade cameras (15,244 nondermoscopy) and classified by three board-certified dermatologists. Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging. We also present a new method to extract intrapatient lesion saliency (ugly duckling criteria) on the basis of DCNN features from detected lesions. This saliency ranking was validated against three board-certified dermatologists using a set of 135 individual wide-field images from 68 dermatological patients not included in the DCNN training set, exhibiting 82.96% (67.88 to 88.26%) agreement with at least one of the top three lesions in the dermatological consensus ranking. This method could allow for rapid and accurate assessments of pigmented lesion suspiciousness within a primary care visit and could enable improved patient triaging, utilization of resources, and earlier treatment of melanoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Charming采纳,获得10
1秒前
2秒前
zzzzd完成签到,获得积分10
3秒前
王图给王图的求助进行了留言
3秒前
魔幻半仙完成签到 ,获得积分10
4秒前
DT完成签到,获得积分10
4秒前
4秒前
赵学雨发布了新的文献求助10
5秒前
隐形曼青应助一坨采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
幸福大白发布了新的文献求助10
7秒前
8秒前
10秒前
大马猴完成签到,获得积分10
10秒前
10秒前
汉堡包应助123yaoyao采纳,获得10
10秒前
10秒前
lxyy应助努力生活的小柴采纳,获得10
10秒前
DT发布了新的文献求助10
10秒前
语上发布了新的文献求助10
10秒前
SAber完成签到,获得积分20
11秒前
憨憨芸发布了新的文献求助10
12秒前
12秒前
懦弱的祥完成签到 ,获得积分10
12秒前
qvB发布了新的文献求助10
12秒前
空心阁人完成签到,获得积分10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
13秒前
滴滴答答应助科研通管家采纳,获得10
13秒前
13秒前
Akim应助科研通管家采纳,获得10
13秒前
鸣笛应助科研通管家采纳,获得30
14秒前
打打应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608373
求助须知:如何正确求助?哪些是违规求助? 4014956
关于积分的说明 12431782
捐赠科研通 3696131
什么是DOI,文献DOI怎么找? 2037842
邀请新用户注册赠送积分活动 1070949
科研通“疑难数据库(出版商)”最低求助积分说明 954875