Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images

皮肤病科 医学 计算机科学 深度学习 皮肤损伤 人工智能
作者
Luis R. Soenksen,Timothy Kassis,Susan Conover,Berta Martí-Fuster,Judith Birkenfeld,Jason M. Tucker-Schwartz,Asif Naseem,Robert Stavert,Caroline C. Kim,Maryanne M. Senna,J.A. Avilés-Izquierdo,James J. Collins,Regina Barzilay,Martha L. Gray
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:13 (581) 被引量:109
标识
DOI:10.1126/scitranslmed.abb3652
摘要

A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to improved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic value, efficient tools for SPL detection are mostly absent. To bridge this gap, we developed an SPL analysis system for wide-field images using deep convolutional neural networks (DCNNs) and applied it to a 38,283 dermatological dataset collected from 133 patients and publicly available images. These images were obtained from a variety of consumer-grade cameras (15,244 nondermoscopy) and classified by three board-certified dermatologists. Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging. We also present a new method to extract intrapatient lesion saliency (ugly duckling criteria) on the basis of DCNN features from detected lesions. This saliency ranking was validated against three board-certified dermatologists using a set of 135 individual wide-field images from 68 dermatological patients not included in the DCNN training set, exhibiting 82.96% (67.88 to 88.26%) agreement with at least one of the top three lesions in the dermatological consensus ranking. This method could allow for rapid and accurate assessments of pigmented lesion suspiciousness within a primary care visit and could enable improved patient triaging, utilization of resources, and earlier treatment of melanoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
香爆脆发布了新的文献求助10
1秒前
bsn完成签到 ,获得积分10
2秒前
落寞依珊应助跳跃的洪纲采纳,获得20
3秒前
激情的三毒完成签到,获得积分10
3秒前
LF完成签到,获得积分10
3秒前
3秒前
123发布了新的文献求助10
4秒前
mark发布了新的文献求助10
5秒前
Hello应助葡萄采纳,获得30
6秒前
雨过天晴发布了新的文献求助10
6秒前
顾矜应助LZY采纳,获得10
7秒前
夜雨完成签到,获得积分10
8秒前
8秒前
Cuisine完成签到 ,获得积分10
9秒前
9秒前
高兴的小完成签到,获得积分10
10秒前
还单身的寒云完成签到,获得积分10
10秒前
10秒前
Waris完成签到 ,获得积分10
11秒前
11秒前
陶陶完成签到,获得积分10
11秒前
曹庆威完成签到,获得积分10
12秒前
wbing完成签到,获得积分10
13秒前
13秒前
雪山飞龙发布了新的文献求助10
13秒前
14秒前
王老吉发布了新的文献求助10
14秒前
15秒前
hsp关闭了hsp文献求助
16秒前
山东老铁发布了新的文献求助10
16秒前
yiyi131发布了新的文献求助10
16秒前
16秒前
16秒前
18秒前
FashionBoy应助卢健辉采纳,获得10
18秒前
sujiaoziemo完成签到,获得积分10
19秒前
有只猫叫一区给有只猫叫一区的求助进行了留言
19秒前
太和竹签发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545