Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images

皮肤病科 医学 计算机科学 深度学习 皮肤损伤 人工智能
作者
Luis R. Soenksen,Timothy Kassis,Susan Conover,Berta Martí-Fuster,Judith Birkenfeld,Jason M. Tucker-Schwartz,Asif Naseem,Robert Stavert,Caroline C. Kim,Maryanne M. Senna,J.A. Avilés-Izquierdo,James J. Collins,Regina Barzilay,Martha L. Gray
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:13 (581) 被引量:109
标识
DOI:10.1126/scitranslmed.abb3652
摘要

A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to improved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic value, efficient tools for SPL detection are mostly absent. To bridge this gap, we developed an SPL analysis system for wide-field images using deep convolutional neural networks (DCNNs) and applied it to a 38,283 dermatological dataset collected from 133 patients and publicly available images. These images were obtained from a variety of consumer-grade cameras (15,244 nondermoscopy) and classified by three board-certified dermatologists. Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging. We also present a new method to extract intrapatient lesion saliency (ugly duckling criteria) on the basis of DCNN features from detected lesions. This saliency ranking was validated against three board-certified dermatologists using a set of 135 individual wide-field images from 68 dermatological patients not included in the DCNN training set, exhibiting 82.96% (67.88 to 88.26%) agreement with at least one of the top three lesions in the dermatological consensus ranking. This method could allow for rapid and accurate assessments of pigmented lesion suspiciousness within a primary care visit and could enable improved patient triaging, utilization of resources, and earlier treatment of melanoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助WH采纳,获得10
刚刚
刚刚
可爱的函函应助杏梨采纳,获得10
1秒前
1秒前
老豆完成签到,获得积分10
1秒前
牛牛123完成签到 ,获得积分10
1秒前
滴滴滴发布了新的文献求助10
1秒前
王旭东完成签到 ,获得积分10
1秒前
liian7应助zz采纳,获得10
1秒前
汉堡包应助失眠的耳机采纳,获得10
1秒前
1秒前
胡图图完成签到,获得积分10
2秒前
寻水的鱼发布了新的文献求助10
2秒前
天天快乐应助strug783采纳,获得10
3秒前
领导范儿应助BU会采纳,获得10
3秒前
薰硝壤应助Frank采纳,获得20
4秒前
刘斌发布了新的文献求助10
4秒前
profit关注了科研通微信公众号
5秒前
小马甲应助dududu采纳,获得10
5秒前
努力退休小博士完成签到,获得积分20
5秒前
6秒前
粽子完成签到,获得积分10
8秒前
深情安青应助小小怪将军采纳,获得10
8秒前
EricYang发布了新的文献求助10
9秒前
慕青应助guo采纳,获得10
9秒前
111完成签到,获得积分10
9秒前
帝释天I完成签到,获得积分10
9秒前
西鱼完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
言草西完成签到,获得积分10
12秒前
quyunp完成签到,获得积分10
12秒前
lemon完成签到,获得积分10
12秒前
南北应助研友_EZ1KkL采纳,获得20
12秒前
Frank完成签到,获得积分10
12秒前
小蘑菇应助grace采纳,获得10
12秒前
传奇3应助明亮寻绿采纳,获得10
13秒前
传奇3应助Joy采纳,获得10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152922
求助须知:如何正确求助?哪些是违规求助? 2804134
关于积分的说明 7857235
捐赠科研通 2461873
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788