Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors

材料科学 粘附 纤维素 复合材料 图层(电子) 羟乙基纤维素 羧甲基纤维素 细菌纤维素 纳米技术 化学工程 模数 胶粘剂 工程类 冶金
作者
Qinhua Wang,Xiaofeng Pan,Jiajia Guo,Liulian Huang,Lihui Chen,Xiaojuan Ma,Shilin Cao,Yonghao Ni
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:414: 128903-128903 被引量:106
标识
DOI:10.1016/j.cej.2021.128903
摘要

Mechanical adaptability, great wearability, application stability, and self-powered sensing characteristics are important requirements for hydrogel-based strain sensors. In this study, a novel double-layer hydrogel was fabricated with asymmetrical adhesion, strength, and electriferous properties. Wherein, the lignosulfonate sodium (LS)-borax mediated bottom hydrogel layer exhibits excellent softness (Young's modulus: ~14.2 kPa) and skin-adhesion (Adhesive strength: ~18.7 kPa) while the quaternary hydroxyethyl cellulose (QHEC) mediated top hydrogel layer demonstrates great mechanical strength (Young's modulus: ~101.3 kPa) and non-adhesive (Adhesive strength: ~2.2 kPa) properties. These complementary asymmetrical adhesion and strength properties endow the hydrogel-based sensor with exceptionally stable sensing performance and adaptive wearability; moreover, the lignocellulosic materials utilization plays a significant role in the designability, antibacterial and biodegradable properties. In addition, the synergy of negative LS (-) and positive QHEC (+) particles enables the double-layer hydrogel great self-powered sensing because of the directional movement of free ions initiated by the external mechanical stimulus. This study presents a hierarchical design idea of wearable electronics, which will have potential applications in many fields from wearable bioelectrodes to self-powered sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
xiaoguai完成签到 ,获得积分10
2秒前
甜蜜晓绿发布了新的文献求助10
4秒前
4秒前
Bruce发布了新的文献求助10
4秒前
5秒前
5秒前
MYhang完成签到,获得积分10
5秒前
wxd发布了新的文献求助10
7秒前
7秒前
哈哈发布了新的文献求助10
8秒前
8秒前
西哈哈发布了新的文献求助10
8秒前
科研通AI5应助lili采纳,获得10
8秒前
郑嘻嘻完成签到,获得积分10
8秒前
8秒前
FEI完成签到,获得积分20
8秒前
10秒前
英姑应助顺利的乐枫采纳,获得10
10秒前
10秒前
10秒前
11秒前
木子加y完成签到 ,获得积分10
12秒前
小蘑菇应助Sally采纳,获得10
12秒前
命运的X号完成签到,获得积分10
12秒前
yangyong发布了新的文献求助10
13秒前
13秒前
图图烤肉完成签到,获得积分10
14秒前
ajiaxi完成签到,获得积分10
14秒前
Bruce完成签到,获得积分10
15秒前
英俊的水彤完成签到 ,获得积分10
15秒前
刘金金完成签到,获得积分10
16秒前
16秒前
命运的X号发布了新的文献求助10
16秒前
17秒前
HJJHJH发布了新的文献求助10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794