Fabrics Recommendation for Fashion Design by Using Fuzzy Logic and Rough Sets

关系(数据库) 计算机科学 模糊逻辑 推荐系统 选择(遗传算法) 粗集 感知 服装设计 钥匙(锁) 人工智能 数据挖掘 机器学习 服装 计算机安全 生物 历史 考古 神经科学
作者
Min Dong,Xianyi Zeng,Ludovic Koehl,Junjie Zhang
出处
期刊:Journal of fuzzy logic and modeling in engineering [Bentham Science]
卷期号:1 (1) 被引量:1
标识
DOI:10.2174/2666294901666210223165824
摘要

Background: Fabric is one of the key and vital design factors in fashion design. However, selection of relevant fabrics is rather complex for designers and managers due to the complexity of criteria at different levels. Introduction: In this paper, we propose a new fabric recommendation model in order to quickly realize fabric selection from non-technical fashion features only and predict fashion features from any fabric technical parameters. This approach is extremely significant for fashion designers who do not completely master fabric technical details. It is also very useful for fabric developers who have no knowledge on fashion markets and fashion consumers. Method: The proposed fabric recommendation model has been built by exploiting designers’ professional knowledge and consumers’ preferences. Concretely, we first use fuzzy sets for formalizing and interpreting measured technical parameters and linguistic sensory properties of fabrics and then model the relation between the technical parameters and sensory properties by using rough sets. Next, we model the relation between fashion themes and sensory properties using fuzzy relations. By combining these two models, we establish a hybrid model characterizing the relation between fashion themes and technical parameters. Result: The proposed model has been validated through a real fabric recommendation case for designer’s specific requirements. We can find that the proposed model is efficient since the averaged value of prediction errors is 8.57%, which does not exceed 10% (generally considered as allowable range of human perception error). Conclusion: The proposed model will constitute one important component for establishing an intelligent recommender system for garment design, enabling to support innovations in textile/apparel industry in terms of mass customization and e-shopping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lynnlovelove发布了新的文献求助10
刚刚
1秒前
胖头鱼完成签到,获得积分10
1秒前
深情安青应助菜菜果冻采纳,获得10
2秒前
chongtse应助shenghaowen采纳,获得10
2秒前
乐观啤酒应助无曲采纳,获得10
2秒前
龙弟弟发布了新的文献求助10
3秒前
无限的板栗完成签到 ,获得积分10
4秒前
星河在眼里完成签到,获得积分10
4秒前
tae117完成签到,获得积分10
4秒前
聪明的天亦完成签到,获得积分10
5秒前
汉堡包应助牛肉汉堡采纳,获得10
5秒前
科研通AI5应助努力摆烂采纳,获得30
7秒前
Sunny完成签到 ,获得积分10
8秒前
张继超发布了新的文献求助10
8秒前
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
11秒前
cquank完成签到,获得积分10
11秒前
无望幽月完成签到 ,获得积分10
12秒前
www完成签到 ,获得积分10
13秒前
专注鼠标完成签到,获得积分10
14秒前
15秒前
沉静烨伟发布了新的文献求助10
15秒前
Kyone完成签到,获得积分10
16秒前
开朗之云完成签到,获得积分20
16秒前
liuguimin完成签到,获得积分10
17秒前
研友_VZG7GZ应助清爽的如冰采纳,获得10
17秒前
chongtse发布了新的文献求助10
17秒前
sgt发布了新的文献求助10
17秒前
17秒前
张继超完成签到,获得积分10
19秒前
20秒前
21秒前
RATHER发布了新的文献求助10
22秒前
22秒前
ysl完成签到,获得积分10
23秒前
wj发布了新的文献求助10
24秒前
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701220
求助须知:如何正确求助?哪些是违规求助? 3251569
关于积分的说明 9875257
捐赠科研通 2963566
什么是DOI,文献DOI怎么找? 1625169
邀请新用户注册赠送积分活动 769876
科研通“疑难数据库(出版商)”最低求助积分说明 742582