Fabrics Recommendation for Fashion Design by Using Fuzzy Logic and Rough Sets

关系(数据库) 计算机科学 模糊逻辑 推荐系统 选择(遗传算法) 粗集 感知 服装设计 钥匙(锁) 人工智能 数据挖掘 机器学习 服装 计算机安全 生物 历史 考古 神经科学
作者
Min Dong,Xianyi Zeng,Ludovic Koehl,Junjie Zhang
出处
期刊:Journal of fuzzy logic and modeling in engineering [Bentham Science]
卷期号:1 (1) 被引量:1
标识
DOI:10.2174/2666294901666210223165824
摘要

Background: Fabric is one of the key and vital design factors in fashion design. However, selection of relevant fabrics is rather complex for designers and managers due to the complexity of criteria at different levels. Introduction: In this paper, we propose a new fabric recommendation model in order to quickly realize fabric selection from non-technical fashion features only and predict fashion features from any fabric technical parameters. This approach is extremely significant for fashion designers who do not completely master fabric technical details. It is also very useful for fabric developers who have no knowledge on fashion markets and fashion consumers. Method: The proposed fabric recommendation model has been built by exploiting designers’ professional knowledge and consumers’ preferences. Concretely, we first use fuzzy sets for formalizing and interpreting measured technical parameters and linguistic sensory properties of fabrics and then model the relation between the technical parameters and sensory properties by using rough sets. Next, we model the relation between fashion themes and sensory properties using fuzzy relations. By combining these two models, we establish a hybrid model characterizing the relation between fashion themes and technical parameters. Result: The proposed model has been validated through a real fabric recommendation case for designer’s specific requirements. We can find that the proposed model is efficient since the averaged value of prediction errors is 8.57%, which does not exceed 10% (generally considered as allowable range of human perception error). Conclusion: The proposed model will constitute one important component for establishing an intelligent recommender system for garment design, enabling to support innovations in textile/apparel industry in terms of mass customization and e-shopping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vsvsgo完成签到,获得积分10
1秒前
米奇完成签到 ,获得积分10
1秒前
加一点荒谬完成签到,获得积分10
1秒前
1秒前
一一一给轻松白桃的求助进行了留言
3秒前
zz2905完成签到,获得积分10
3秒前
小超人完成签到 ,获得积分10
4秒前
香蕉初瑶完成签到,获得积分10
4秒前
meimei完成签到 ,获得积分10
4秒前
儒雅的菠萝吹雪完成签到,获得积分10
5秒前
5秒前
6秒前
水寒完成签到,获得积分10
6秒前
拉长的念珍完成签到,获得积分10
7秒前
大气夜山完成签到 ,获得积分10
7秒前
Tristan完成签到 ,获得积分10
9秒前
我思故我在完成签到,获得积分10
9秒前
10秒前
何浏亮完成签到,获得积分10
11秒前
阿成完成签到,获得积分10
11秒前
Pauline完成签到 ,获得积分10
11秒前
12秒前
微笑的语芙完成签到,获得积分10
12秒前
12秒前
小背包完成签到 ,获得积分10
12秒前
水寒发布了新的文献求助10
14秒前
希望天下0贩的0应助17采纳,获得10
14秒前
yu完成签到 ,获得积分10
14秒前
钟瑞乾完成签到,获得积分10
14秒前
花痴的电灯泡完成签到,获得积分10
15秒前
虚心念桃完成签到,获得积分10
16秒前
jiaolulu发布了新的文献求助10
17秒前
zyw完成签到 ,获得积分10
17秒前
ironsilica完成签到,获得积分10
20秒前
21秒前
被动科研完成签到,获得积分10
23秒前
斗牛的番茄完成签到 ,获得积分10
24秒前
所所应助时尚俊驰采纳,获得10
24秒前
zgt01发布了新的文献求助10
28秒前
背后如彤完成签到 ,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022