粒体自噬
品脱1
SOD2
氧化应激
自噬
线粒体ROS
帕金
生物
下调和上调
癌症研究
内分泌学
化学
超氧化物歧化酶
内科学
细胞凋亡
医学
生物化学
基因
疾病
帕金森病
作者
Jingang Hou,Yee Jin Yun,Jianjie Xue,Byeong-Min Jeon,Sunchang Kim
摘要
Clinical dose of doxorubicin (100 nM) induced cellular senescence and various secretory phenotypes in breast cancer and normal epithelial cells. Herein, we reported the detailed mechanism underlying ginsenoside Rh2-mediated NF-κB inhibition, and mitophagy promotion were evaluated by antibody array assay, western blotting analysis, and immunocytostaining. Ginsenoside Rh2 suppressed the protein levels of TRAF6, p62, phosphorylated IKK, and IκB, which consequently inactivated NF-κB activity. Rh2-mediated secretory phenotype was delineated by the suppressed IL-8 secretion. Senescent epithelial cells showed increased level of reactive oxygen species (ROS), which was significantly abrogated by Rh2, with upregulation on SIRT 3 and SIRT 5 and subsequent increase in SOD1 and SOD2. Rh2 remarkably favored mitophagy by the increased expressions of PINK1 and Parkin and decreased level of PGC-1α. A decreased secretion of IL-8 challenged by mitophagy inhibitor Mdivi-1 with an NF-κB luciferase system was confirmed. Importantly, secretory senescent epithelial cells promoted the breast cancer (MCF-7) proliferation while decreased the survival of normal epithelial cells demonstrated by co-culture system, which was remarkably alleviated by ginsenoside Rh2 treatment. These data included ginsenoside Rh2 regulated ROS and mitochondrial autophagy, which were in large part attributed to secretory phenotype of senescent breast epithelial cells induced by doxorubicin. These findings also suggested that ginsenoside Rh2 is a potential treatment candidate for the attenuation of aging related disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI