Establishment of predictive model for analyzing clinical pregnancy outcome based on IVF-ET and ICSI assisted reproductive technology

辅助生殖技术 卵胞浆内精子注射 怀孕 置信区间 妇科 医学 体外受精 胚胎移植 妊娠率 统计显著性 自发受孕 产科 生殖医学 不育 生物 内科学 遗传学
作者
Songwei Jiang,Liuming Li,Feiwen Li,Mujun Li
出处
期刊:Saudi Journal of Biological Sciences [Elsevier]
卷期号:27 (4): 1049-1056 被引量:5
标识
DOI:10.1016/j.sjbs.2020.02.021
摘要

In order to explore the predictive model for analyzing clinical pregnancy outcomes based on IVF-ET (in vitro fertilization and embryo transfer) and ICSI (Intracytoplasmic sperm injection) assisted reproductive technology (ART). Methods: this study selected the embryo transfer (fresh) patients who received IVF-ET or ICSI treatment in the First Affiliated Hospital of Guangxi Medical University as the subjects. Moreover, the controlled ovarian stimulation (COS) and follow-up were conducted to collect relevant data for analysis, and finally a prediction model was established. Results: The results showed that the patients were divided into different ovarian response groups at first. The age, bFSH and bFSH/bLH were the highest in the poor ovarian response group (POR), followed by the normal ovarian response group (NOR) and the lowest in the high ovarian response group (HOR). The area under the ROC curve was 0.669 according to the predictive model of pregnancy-related factors. The confidence interval of 94% was 0.629–0.697, with statistical significance (P = 0.000, P < 0.01). Conclusion: it can be concluded that in clinical pregnancy, for many related factors, regression equation can be used to establish a prediction model to diagnose the success rate of pregnancy. In conclusion, a prediction model can be built based on the relevant experimental results, to provide experimental reference ideas for increasing the success rate of ART in late clinical pregnancy, which is of great research significance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨飞完成签到,获得积分10
刚刚
王皮皮完成签到,获得积分10
刚刚
1秒前
上官若男应助手术刀采纳,获得10
1秒前
2秒前
左传琦发布了新的文献求助10
2秒前
无花果应助奥利奥配奶采纳,获得10
2秒前
科研通AI2S应助南国采纳,获得10
2秒前
orixero应助我爱刘惜君采纳,获得10
2秒前
3秒前
3秒前
爆米花应助老迟到的曼青采纳,获得10
3秒前
4秒前
yijian发布了新的文献求助10
4秒前
共享精神应助王皮皮采纳,获得10
5秒前
封尘逸动完成签到,获得积分10
5秒前
汉堡包应助迷你的严青采纳,获得10
5秒前
5秒前
默默完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
6秒前
标致白卉完成签到,获得积分10
6秒前
兴奋的发卡完成签到 ,获得积分10
7秒前
lijiajun发布了新的文献求助10
7秒前
xu发布了新的文献求助10
7秒前
8秒前
司空晋鹏完成签到,获得积分10
8秒前
gg完成签到,获得积分10
8秒前
Brave_1发布了新的文献求助30
8秒前
结实星星发布了新的文献求助10
9秒前
bdJ发布了新的文献求助10
9秒前
michen发布了新的文献求助10
9秒前
1204完成签到,获得积分10
10秒前
10秒前
ZZ完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
舒舒陈发布了新的文献求助10
13秒前
Lucien完成签到 ,获得积分10
13秒前
欢呼的鲂完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758956
求助须知:如何正确求助?哪些是违规求助? 5518438
关于积分的说明 15392719
捐赠科研通 4896143
什么是DOI,文献DOI怎么找? 2633584
邀请新用户注册赠送积分活动 1581565
关于科研通互助平台的介绍 1537189