Establishment of predictive model for analyzing clinical pregnancy outcome based on IVF-ET and ICSI assisted reproductive technology

辅助生殖技术 卵胞浆内精子注射 怀孕 置信区间 妇科 医学 体外受精 胚胎移植 妊娠率 统计显著性 自发受孕 产科 生殖医学 不育 生物 内科学 遗传学
作者
Songwei Jiang,Liuming Li,Feiwen Li,Mujun Li
出处
期刊:Saudi Journal of Biological Sciences [Elsevier]
卷期号:27 (4): 1049-1056 被引量:5
标识
DOI:10.1016/j.sjbs.2020.02.021
摘要

In order to explore the predictive model for analyzing clinical pregnancy outcomes based on IVF-ET (in vitro fertilization and embryo transfer) and ICSI (Intracytoplasmic sperm injection) assisted reproductive technology (ART). Methods: this study selected the embryo transfer (fresh) patients who received IVF-ET or ICSI treatment in the First Affiliated Hospital of Guangxi Medical University as the subjects. Moreover, the controlled ovarian stimulation (COS) and follow-up were conducted to collect relevant data for analysis, and finally a prediction model was established. Results: The results showed that the patients were divided into different ovarian response groups at first. The age, bFSH and bFSH/bLH were the highest in the poor ovarian response group (POR), followed by the normal ovarian response group (NOR) and the lowest in the high ovarian response group (HOR). The area under the ROC curve was 0.669 according to the predictive model of pregnancy-related factors. The confidence interval of 94% was 0.629–0.697, with statistical significance (P = 0.000, P < 0.01). Conclusion: it can be concluded that in clinical pregnancy, for many related factors, regression equation can be used to establish a prediction model to diagnose the success rate of pregnancy. In conclusion, a prediction model can be built based on the relevant experimental results, to provide experimental reference ideas for increasing the success rate of ART in late clinical pregnancy, which is of great research significance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liu336371完成签到,获得积分10
刚刚
1秒前
是我呀吼完成签到,获得积分10
1秒前
2秒前
tree驳回了一一应助
2秒前
俊逸若之发布了新的文献求助10
3秒前
务实莫言完成签到,获得积分10
3秒前
小满发布了新的文献求助10
4秒前
行行行完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
golf完成签到,获得积分10
6秒前
腼腆的缘分完成签到,获得积分10
6秒前
小石头完成签到,获得积分10
6秒前
6秒前
万能图书馆应助俊逸若之采纳,获得10
7秒前
7秒前
shishuang发布了新的文献求助10
8秒前
科研通AI6应助大胆的平蓝采纳,获得10
8秒前
小蘑菇应助Magical采纳,获得10
8秒前
GJ发布了新的文献求助10
8秒前
8秒前
科研通AI6应助好名字采纳,获得10
9秒前
科研通AI6应助动听书文采纳,获得10
9秒前
lucky发布了新的文献求助10
10秒前
离子键发布了新的文献求助10
10秒前
liz发布了新的文献求助10
10秒前
strongfrog发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
灰灰成长中完成签到,获得积分10
11秒前
11秒前
今后应助温柔樱桃采纳,获得10
12秒前
高媛完成签到,获得积分20
13秒前
yuko完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836