A Compositional Neural Architecture for Language

连接主义 计算机科学 认知科学 系统神经科学 计算神经科学 组合性原则 计算模型 神经语言学 感觉系统 等级制度 人工智能 心理语言学 认知 人工神经网络 心理学 神经科学 市场经济 经济 中枢神经系统 少突胶质细胞 髓鞘
作者
Andrea E. Martin
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:32 (8): 1407-1427 被引量:92
标识
DOI:10.1162/jocn_a_01552
摘要

Abstract Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception–action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de)compositional meaning. The model's architecture—a multidimensional coordinate system based on neurophysiological models of sensory processing—proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations, and moves toward unifying basic insights from linguistics and psycholinguistics with the currency of neural computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助zz采纳,获得10
1秒前
大个应助Bi8bo采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
在水一方应助小垃圾采纳,获得10
2秒前
3秒前
3秒前
3秒前
孙萌萌完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
merlinsong完成签到,获得积分10
5秒前
ahua关注了科研通微信公众号
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
Cherish完成签到,获得积分10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
yi发布了新的文献求助10
6秒前
聪慧小霜应助科研通管家采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
求知者1701应助科研通管家采纳,获得20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
VDC应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
现实的问玉完成签到 ,获得积分10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403