Preparation and characterization of phosphate-stabilized amorphous calcium carbonate nanoparticles and their application in curcumin delivery

生物相容性 纳米颗粒 药物输送 球霰石 碳酸钙 化学工程 姜黄素 材料科学 核化学 无定形固体 化学 无定形磷酸钙 纳米技术 有机化学 生物化学 工程类 文石
作者
Chaohui Rao,Min Li,Xiaoqing Sun,Meilin Li,Xiaojie Lian,Huifang Wang,Lan Jia,Baolong Niu,Wenfeng Li
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:255: 123552-123552 被引量:20
标识
DOI:10.1016/j.matchemphys.2020.123552
摘要

Abstract Nano-sized amorphous calcium carbonate (ACC) have a great potential for drug transport and drug delivery because of their high drug loading capacity, excellent biocompatibility and biodegradability. However, ACC is the thermodynamically least stable phase of calcium carbonate, and such thermal metastability often transforms it into more stable vaterite or calcite phases, so the inhibition of the phase transformation of ACC is of great significance for its application in drug delivery systems. Herein, phosphate as a morphology controlling additive was introduced to stabilize the metastable ACC. The results showed that the composite nanoparticles (named here the ACCP) with narrow size distribution located at approximately 128 nm (measured by dynamic light scattering) were obtained, when Ca2+ concentration and C/P were 10 mM and 7/3 respectively, prepared at 30 °C for 10 min. The powdered X-ray diffraction (XRD) results showed that phosphate has an excellent ability to stabilize ACC, and even after storage for 60 days at room temperature, the structure of ACCP remains amorphous. The in vitro drug release tests showed that ACCP nanoparticles had a high curcumin (Cur) loading capacity and a sustained drug release property. Moreover, the 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH) radical scavenging activity assay showed that ACCP-encapsulating strategy could effectively prevent the decomposition of Cur. In vitro cytotoxicity tests demonstrated that the resultants have excellent biocompatibility. Therefore, the as-prepared ACCP nanoparticles are promising for drug delivery applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助隐形蜡烛采纳,获得10
1秒前
1秒前
2秒前
Aftermaths发布了新的文献求助10
2秒前
2秒前
3秒前
Orange应助勤恳白山采纳,获得30
3秒前
3秒前
3秒前
asd发布了新的文献求助10
3秒前
4秒前
4秒前
忧心的雁发布了新的文献求助10
5秒前
科研通AI5应助格茸采纳,获得10
5秒前
5秒前
无奈满天发布了新的文献求助10
6秒前
852应助要懒死了hhh采纳,获得10
6秒前
6秒前
kw发布了新的文献求助10
7秒前
7秒前
Sophia完成签到,获得积分10
8秒前
害羞耷发布了新的文献求助10
8秒前
qian完成签到,获得积分10
8秒前
9秒前
9秒前
希望天下0贩的0应助dyyy采纳,获得10
10秒前
科研通AI5应助灵巧大地采纳,获得100
10秒前
10秒前
郑qqqq发布了新的文献求助10
10秒前
Yy发布了新的文献求助10
11秒前
Owen应助salvage采纳,获得10
12秒前
无奈满天完成签到,获得积分10
12秒前
zz应助wardwood采纳,获得10
12秒前
许容完成签到,获得积分10
12秒前
13秒前
fairy发布了新的文献求助10
13秒前
15秒前
自信的九娘完成签到,获得积分10
15秒前
16秒前
xry发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543107
求助须知:如何正确求助?哪些是违规求助? 3120526
关于积分的说明 9342707
捐赠科研通 2818521
什么是DOI,文献DOI怎么找? 1549648
邀请新用户注册赠送积分活动 722213
科研通“疑难数据库(出版商)”最低求助积分说明 713049