Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity

可再生能源 发电 电力零售 自然资源经济学 可计算一般均衡 水力发电 经济 上网电价 环境科学 环境经济学 电力市场 能源政策 微观经济学 工程类 功率(物理) 电气工程 物理 量子力学
作者
Qi Cui,Yu Liu,Tariq Ali,Ji Gao,Hao Chen
出处
期刊:Energy Economics [Elsevier]
卷期号:91: 104892-104892 被引量:53
标识
DOI:10.1016/j.eneco.2020.104892
摘要

To mitigate climate change impacts and achieve low-carbon transformation, China has accelerated the development of renewable energy, which is severely challenged by the curtailment of renewable electricity. This study uses a dynamic multi-sectoral CGE model with alternative nesting structures and substitution elasticities for electricity with different power sources to capture the economic and environmental feasibility of reducing renewable electricity curtailment across all economic sectors in China. The reduction of renewable electricity curtailment is simulated during 2021–2030 from the curtailment rates of 2015–2017. We found that the reduction of renewable electricity curtailment would lead to a significant expansion in the output of renewable electricity and a moderate decrease in non-renewable electricity production. Among the renewable electricity, wind power has the most significant output gain (over 9%), with solar power and hydropower outputs rising by over 5% and 1.5%, respectively. However, without the cost-neutrality assumption, the impacts of reducing electricity curtailment would be largely over-estimated with CGE models simulated by improved technology. The disparity between results from the models with alternative nesting constant elasticity of substitution (CES) functions for electricity sectors is highly dependent on the difference between their substitution elasticities. Accompanying the changes in electricity generation, the reduction of renewable electricity curtailment would bring multiple green co-benefits like significantly reducing CO2 and air pollutants emitted from electricity sectors, and improvements in real GDP and employment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助心杨采纳,获得10
2秒前
rortis完成签到,获得积分10
2秒前
一粟发布了新的文献求助10
3秒前
3秒前
WHHEY完成签到,获得积分10
4秒前
科研通AI2S应助敏er好学采纳,获得10
7秒前
8秒前
1531811发布了新的文献求助10
8秒前
Lowman完成签到,获得积分10
9秒前
10秒前
充电宝应助罗拉采纳,获得10
14秒前
M二十四发布了新的文献求助10
15秒前
天天快乐应助1531811采纳,获得10
15秒前
wlj完成签到 ,获得积分10
16秒前
16秒前
17秒前
阿玖完成签到 ,获得积分10
17秒前
18秒前
心杨发布了新的文献求助10
21秒前
22秒前
22秒前
tang发布了新的文献求助10
23秒前
25秒前
29秒前
ikun发布了新的文献求助10
29秒前
wanci应助朴实的豌豆采纳,获得10
31秒前
斯文败类应助盛夏如花采纳,获得10
32秒前
心杨完成签到,获得积分10
33秒前
34秒前
YepbingCHOI发布了新的文献求助10
35秒前
Akim应助tang采纳,获得10
36秒前
希望天下0贩的0应助poyo采纳,获得10
36秒前
Dr大壮完成签到,获得积分10
37秒前
37秒前
40秒前
sci小白关注了科研通微信公众号
41秒前
我是老大应助YepbingCHOI采纳,获得10
43秒前
44秒前
归尘发布了新的文献求助100
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316201
求助须知:如何正确求助?哪些是违规求助? 2947786
关于积分的说明 8538590
捐赠科研通 2623888
什么是DOI,文献DOI怎么找? 1435612
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457