Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images

体素 分割 锥束ct 人工智能 病变 计算机科学 预测值 数据集 核医学 模式识别(心理学) 医学 放射科 计算机断层摄影术 病理 内科学
作者
Frank Setzer,Katherine J. Shi,Zhiyang Zhang,Hao Yan,Hyunsoo Yoon,Mel Mupparapu,Jing Li
出处
期刊:Journal of Endodontics [Elsevier]
卷期号:46 (7): 987-993 被引量:178
标识
DOI:10.1016/j.joen.2020.03.025
摘要

The aim of this study was to use a Deep Learning (DL) algorithm for the automated segmentation of cone-beam computed tomographic (CBCT) images and the detection of periapical lesions.Limited field of view CBCT volumes (n = 20) containing 61 roots with and without lesions were segmented clinician dependent versus using the DL approach based on a U-Net architecture. Segmentation labeled each voxel as 1 of 5 categories: "lesion" (periapical lesion), "tooth structure," "bone," "restorative materials," and "background." Repeated splits of all images into a training set and a validation set based on 5-fold cross validation were performed using Deep Learning segmentation (DLS), and the results were averaged. DLS versus clinical-dependent segmentation was assessed by dichotomized lesion detection accuracy evaluating sensitivity, specificity, positive predictive value, negative predictive value, and voxel-matching accuracy using the DICE index for each of the 5 labels.DLS lesion detection accuracy was 0.93 with specificity of 0.88, positive predictive value of 0.87, and negative predictive value of 0.93. The overall cumulative DICE indexes for the individual labels were lesion = 0.52, tooth structure = 0.74, bone = 0.78, restorative materials = 0.58, and background = 0.95. The cumulative DICE index for all actual true lesions was 0.67.This DL algorithm trained in a limited CBCT environment showed excellent results in lesion detection accuracy. Overall voxel-matching accuracy may be benefited by enhanced versions of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助han采纳,获得10
刚刚
刚刚
刚刚
喵喵盖被发布了新的文献求助10
1秒前
zhaoying发布了新的文献求助10
1秒前
ceeray23应助白江虎采纳,获得10
1秒前
打打应助白江虎采纳,获得10
1秒前
菁菁业业完成签到,获得积分10
2秒前
科研通AI6应助糖布里部采纳,获得10
2秒前
万能图书馆应助张小六采纳,获得30
3秒前
3秒前
3秒前
楚珊珊发布了新的文献求助10
4秒前
5秒前
5秒前
教育厮完成签到,获得积分10
5秒前
LYSM应助隐形珊采纳,获得10
5秒前
Rookie完成签到,获得积分10
5秒前
6秒前
莫咏怡关注了科研通微信公众号
6秒前
deng发布了新的文献求助10
6秒前
yzm发布了新的文献求助10
6秒前
浮游应助张利双采纳,获得10
7秒前
7秒前
喵喵盖被完成签到,获得积分10
7秒前
zxb完成签到,获得积分20
8秒前
梁子完成签到,获得积分10
8秒前
受伤路灯完成签到,获得积分10
8秒前
刘英岑完成签到,获得积分10
8秒前
所所应助柚子采纳,获得10
8秒前
8秒前
8秒前
陈文青发布了新的文献求助10
8秒前
9秒前
赘婿应助山水主人采纳,获得10
9秒前
明亮的代灵完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
mouxq发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745