Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images

体素 分割 锥束ct 人工智能 病变 计算机科学 预测值 数据集 核医学 模式识别(心理学) 医学 放射科 计算机断层摄影术 病理 内科学
作者
Frank Setzer,Katherine J. Shi,Zhiyang Zhang,Hao Yan,Hyunsoo Yoon,Mel Mupparapu,Jing Li
出处
期刊:Journal of Endodontics [Elsevier]
卷期号:46 (7): 987-993 被引量:178
标识
DOI:10.1016/j.joen.2020.03.025
摘要

The aim of this study was to use a Deep Learning (DL) algorithm for the automated segmentation of cone-beam computed tomographic (CBCT) images and the detection of periapical lesions.Limited field of view CBCT volumes (n = 20) containing 61 roots with and without lesions were segmented clinician dependent versus using the DL approach based on a U-Net architecture. Segmentation labeled each voxel as 1 of 5 categories: "lesion" (periapical lesion), "tooth structure," "bone," "restorative materials," and "background." Repeated splits of all images into a training set and a validation set based on 5-fold cross validation were performed using Deep Learning segmentation (DLS), and the results were averaged. DLS versus clinical-dependent segmentation was assessed by dichotomized lesion detection accuracy evaluating sensitivity, specificity, positive predictive value, negative predictive value, and voxel-matching accuracy using the DICE index for each of the 5 labels.DLS lesion detection accuracy was 0.93 with specificity of 0.88, positive predictive value of 0.87, and negative predictive value of 0.93. The overall cumulative DICE indexes for the individual labels were lesion = 0.52, tooth structure = 0.74, bone = 0.78, restorative materials = 0.58, and background = 0.95. The cumulative DICE index for all actual true lesions was 0.67.This DL algorithm trained in a limited CBCT environment showed excellent results in lesion detection accuracy. Overall voxel-matching accuracy may be benefited by enhanced versions of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanfan完成签到,获得积分10
刚刚
CipherSage应助范范采纳,获得30
1秒前
1秒前
图图完成签到,获得积分10
3秒前
wangjie发布了新的文献求助10
3秒前
阿泽发布了新的文献求助10
4秒前
mikasa发布了新的文献求助10
5秒前
腼腆的忆安完成签到,获得积分10
6秒前
丘比特应助niniyiya采纳,获得10
7秒前
8秒前
8秒前
8秒前
yy关注了科研通微信公众号
9秒前
10秒前
鲤鱼一鸣完成签到,获得积分10
12秒前
12秒前
万能图书馆应助wangjie采纳,获得10
12秒前
快乐的睫毛完成签到 ,获得积分10
13秒前
SciGPT应助Three采纳,获得10
14秒前
海茵完成签到,获得积分10
14秒前
学术羊发布了新的文献求助10
15秒前
上官若男应助hurb采纳,获得10
15秒前
怪怪发布了新的文献求助10
16秒前
xyx发布了新的文献求助10
16秒前
bobo发布了新的文献求助10
16秒前
18秒前
19秒前
Tingting完成签到 ,获得积分10
19秒前
田哲完成签到 ,获得积分10
20秒前
稳重的宛丝完成签到 ,获得积分10
20秒前
20秒前
思源应助turtle_medchem采纳,获得10
21秒前
科研通AI2S应助小胡采纳,获得10
21秒前
22秒前
zwk发布了新的文献求助10
23秒前
wangjie完成签到,获得积分20
23秒前
23秒前
石头发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393830
求助须知:如何正确求助?哪些是违规求助? 4515135
关于积分的说明 14052862
捐赠科研通 4426320
什么是DOI,文献DOI怎么找? 2431294
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505