Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images

体素 分割 锥束ct 人工智能 病变 计算机科学 预测值 数据集 核医学 模式识别(心理学) 医学 放射科 计算机断层摄影术 病理 内科学
作者
Frank Setzer,Katherine J. Shi,Zhiyang Zhang,Hao Yan,Hyunsoo Yoon,Mel Mupparapu,Jing Li
出处
期刊:Journal of Endodontics [Elsevier]
卷期号:46 (7): 987-993 被引量:142
标识
DOI:10.1016/j.joen.2020.03.025
摘要

The aim of this study was to use a Deep Learning (DL) algorithm for the automated segmentation of cone-beam computed tomographic (CBCT) images and the detection of periapical lesions.Limited field of view CBCT volumes (n = 20) containing 61 roots with and without lesions were segmented clinician dependent versus using the DL approach based on a U-Net architecture. Segmentation labeled each voxel as 1 of 5 categories: "lesion" (periapical lesion), "tooth structure," "bone," "restorative materials," and "background." Repeated splits of all images into a training set and a validation set based on 5-fold cross validation were performed using Deep Learning segmentation (DLS), and the results were averaged. DLS versus clinical-dependent segmentation was assessed by dichotomized lesion detection accuracy evaluating sensitivity, specificity, positive predictive value, negative predictive value, and voxel-matching accuracy using the DICE index for each of the 5 labels.DLS lesion detection accuracy was 0.93 with specificity of 0.88, positive predictive value of 0.87, and negative predictive value of 0.93. The overall cumulative DICE indexes for the individual labels were lesion = 0.52, tooth structure = 0.74, bone = 0.78, restorative materials = 0.58, and background = 0.95. The cumulative DICE index for all actual true lesions was 0.67.This DL algorithm trained in a limited CBCT environment showed excellent results in lesion detection accuracy. Overall voxel-matching accuracy may be benefited by enhanced versions of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助布布采纳,获得10
刚刚
1秒前
轩辕德地发布了新的文献求助10
1秒前
nine发布了新的文献求助30
1秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
2秒前
JamesPei应助小敦采纳,获得10
2秒前
今非发布了新的文献求助10
2秒前
李健的小迷弟应助通~采纳,获得30
2秒前
2秒前
2秒前
fanfan44390发布了新的文献求助10
2秒前
Zhang完成签到,获得积分10
3秒前
小二郎应助小田采纳,获得10
4秒前
4秒前
隐形曼青应助liike采纳,获得10
4秒前
phd发布了新的文献求助10
4秒前
4秒前
dingdong发布了新的文献求助30
4秒前
Orange应助清秀的语山采纳,获得50
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
无花果应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
大李包完成签到,获得积分10
5秒前
思源应助费城青年采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
帮助我的人永远不死完成签到,获得积分20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
LZQ应助科研通管家采纳,获得20
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794