Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images

体素 分割 锥束ct 人工智能 病变 计算机科学 预测值 数据集 核医学 模式识别(心理学) 医学 放射科 计算机断层摄影术 病理 内科学
作者
Frank Setzer,Katherine J. Shi,Zhiyang Zhang,Hao Yan,Hyunsoo Yoon,Mel Mupparapu,Jing Li
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:46 (7): 987-993 被引量:178
标识
DOI:10.1016/j.joen.2020.03.025
摘要

The aim of this study was to use a Deep Learning (DL) algorithm for the automated segmentation of cone-beam computed tomographic (CBCT) images and the detection of periapical lesions.Limited field of view CBCT volumes (n = 20) containing 61 roots with and without lesions were segmented clinician dependent versus using the DL approach based on a U-Net architecture. Segmentation labeled each voxel as 1 of 5 categories: "lesion" (periapical lesion), "tooth structure," "bone," "restorative materials," and "background." Repeated splits of all images into a training set and a validation set based on 5-fold cross validation were performed using Deep Learning segmentation (DLS), and the results were averaged. DLS versus clinical-dependent segmentation was assessed by dichotomized lesion detection accuracy evaluating sensitivity, specificity, positive predictive value, negative predictive value, and voxel-matching accuracy using the DICE index for each of the 5 labels.DLS lesion detection accuracy was 0.93 with specificity of 0.88, positive predictive value of 0.87, and negative predictive value of 0.93. The overall cumulative DICE indexes for the individual labels were lesion = 0.52, tooth structure = 0.74, bone = 0.78, restorative materials = 0.58, and background = 0.95. The cumulative DICE index for all actual true lesions was 0.67.This DL algorithm trained in a limited CBCT environment showed excellent results in lesion detection accuracy. Overall voxel-matching accuracy may be benefited by enhanced versions of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的冰淇淋完成签到,获得积分10
刚刚
刚刚
刘三哥完成签到 ,获得积分10
刚刚
狂野雅彤发布了新的文献求助10
刚刚
风中小蕊完成签到,获得积分10
刚刚
糖果完成签到,获得积分10
刚刚
刚刚
寂寞的迎天完成签到,获得积分10
刚刚
美好念梦完成签到 ,获得积分10
刚刚
poker84完成签到,获得积分10
刚刚
小枫沂岁完成签到,获得积分10
刚刚
耍酷静槐完成签到,获得积分10
刚刚
1秒前
艺阳完成签到,获得积分10
1秒前
zzzy发布了新的文献求助10
1秒前
雨小科发布了新的文献求助10
1秒前
神秘人完成签到,获得积分10
1秒前
壮观的冰双完成签到,获得积分10
1秒前
快乐发布了新的文献求助10
2秒前
情怀应助祝我好运采纳,获得10
2秒前
健忘的灵槐完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
顺利的中道关注了科研通微信公众号
3秒前
tao完成签到,获得积分10
3秒前
3秒前
4秒前
Xxynysmhxs完成签到,获得积分10
4秒前
zzj512682701发布了新的文献求助10
5秒前
5秒前
摩卡摩卡完成签到,获得积分10
5秒前
Zz关闭了Zz文献求助
5秒前
6秒前
西门凡双完成签到,获得积分10
6秒前
maimai完成签到,获得积分10
6秒前
shi0331完成签到,获得积分10
6秒前
yy发布了新的文献求助10
7秒前
曦语完成签到,获得积分20
7秒前
充电宝应助camell采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4937256
求助须知:如何正确求助?哪些是违规求助? 4204376
关于积分的说明 13065366
捐赠科研通 3982001
什么是DOI,文献DOI怎么找? 2180433
邀请新用户注册赠送积分活动 1196350
关于科研通互助平台的介绍 1108366