体素
分割
锥束ct
人工智能
病变
计算机科学
预测值
数据集
核医学
模式识别(心理学)
医学
放射科
计算机断层摄影术
病理
内科学
作者
Frank Setzer,Katherine J. Shi,Zhiyang Zhang,Hao Yan,Hyunsoo Yoon,Mel Mupparapu,Jing Li
标识
DOI:10.1016/j.joen.2020.03.025
摘要
The aim of this study was to use a Deep Learning (DL) algorithm for the automated segmentation of cone-beam computed tomographic (CBCT) images and the detection of periapical lesions.Limited field of view CBCT volumes (n = 20) containing 61 roots with and without lesions were segmented clinician dependent versus using the DL approach based on a U-Net architecture. Segmentation labeled each voxel as 1 of 5 categories: "lesion" (periapical lesion), "tooth structure," "bone," "restorative materials," and "background." Repeated splits of all images into a training set and a validation set based on 5-fold cross validation were performed using Deep Learning segmentation (DLS), and the results were averaged. DLS versus clinical-dependent segmentation was assessed by dichotomized lesion detection accuracy evaluating sensitivity, specificity, positive predictive value, negative predictive value, and voxel-matching accuracy using the DICE index for each of the 5 labels.DLS lesion detection accuracy was 0.93 with specificity of 0.88, positive predictive value of 0.87, and negative predictive value of 0.93. The overall cumulative DICE indexes for the individual labels were lesion = 0.52, tooth structure = 0.74, bone = 0.78, restorative materials = 0.58, and background = 0.95. The cumulative DICE index for all actual true lesions was 0.67.This DL algorithm trained in a limited CBCT environment showed excellent results in lesion detection accuracy. Overall voxel-matching accuracy may be benefited by enhanced versions of artificial intelligence.
科研通智能强力驱动
Strongly Powered by AbleSci AI