Emotion Recognition From Multi-Channel EEG via Deep Forest

计算机科学 脑电图 人工智能 模式识别(心理学) 特征提取 超参数 工件(错误) 情绪分类 深度学习 情绪识别 唤醒 语音识别 心理学 精神科 神经科学
作者
Juan Cheng,Meiyao Chen,Chang Li,Yü Liu,Rencheng Song,Aiping Liu,Xun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 453-464 被引量:181
标识
DOI:10.1109/jbhi.2020.2995767
摘要

Recently, deep neural networks (DNNs) have been applied to emotion recognition tasks based on electroencephalography (EEG), and have achieved better performance than traditional algorithms. However, DNNs still have the disadvantages of too many hyperparameters and lots of training data. To overcome these shortcomings, in this article, we propose a method for multi-channel EEG-based emotion recognition using deep forest. First, we consider the effect of baseline signal to preprocess the raw artifact-eliminated EEG signal with baseline removal. Secondly, we construct 2$D$ frame sequences by taking the spatial position relationship across channels into account. Finally, 2$D$ frame sequences are input into the classification model constructed by deep forest that can mine the spatial and temporal information of EEG signals to classify EEG emotions. The proposed method can eliminate the need for feature extraction in traditional methods and the classification model is insensitive to hyperparameter settings, which greatly reduce the complexity of emotion recognition. To verify the feasibility of the proposed model, experiments were conducted on two public DEAP and DREAMER databases. On the DEAP database, the average accuracies reach to 97.69% and 97.53% for valence and arousal, respectively; on the DREAMER database, the average accuracies reach to 89.03%, 90.41%, and 89.89% for valence, arousal and dominance, respectively. These results show that the proposed method exhibits higher accuracy than the state-of-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAL完成签到,获得积分10
4秒前
搜集达人应助kkuula采纳,获得10
9秒前
李某完成签到 ,获得积分10
9秒前
11秒前
生言生语完成签到,获得积分10
12秒前
15秒前
15秒前
松鼠非鼠完成签到,获得积分10
16秒前
16秒前
19秒前
jyy应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
发文章发布了新的文献求助10
21秒前
21秒前
六嘉完成签到,获得积分20
21秒前
风雨无阻发布了新的文献求助10
21秒前
23秒前
25秒前
26秒前
小卓越完成签到 ,获得积分10
31秒前
35秒前
suchui关注了科研通微信公众号
38秒前
Derek完成签到,获得积分0
40秒前
ght完成签到 ,获得积分10
43秒前
自信的海燕完成签到,获得积分10
45秒前
47秒前
发文章完成签到,获得积分10
47秒前
打打应助korchid采纳,获得10
47秒前
半柚应助平常的毛豆采纳,获得10
49秒前
晨曦应助顺利的若灵采纳,获得10
49秒前
50秒前
唐画发布了新的文献求助10
54秒前
huangxihui发布了新的文献求助10
57秒前
1分钟前
在水一方应助suchui采纳,获得10
1分钟前
1分钟前
方三问发布了新的文献求助10
1分钟前
1分钟前
1分钟前
机灵又蓝完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372256
求助须知:如何正确求助?哪些是违规求助? 2990100
关于积分的说明 8738728
捐赠科研通 2673469
什么是DOI,文献DOI怎么找? 1464527
科研通“疑难数据库(出版商)”最低求助积分说明 677569
邀请新用户注册赠送积分活动 668978