材料科学
MXenes公司
电磁干扰
电磁屏蔽
电磁干扰
复合材料
焦耳加热
透气比表面积
聚苯胺
导电体
图层(电子)
光电子学
聚合物
纳米技术
电气工程
工程类
聚合
作者
Guang Yin,Yu Wang,Wei Wang,Dan Yu
标识
DOI:10.1016/j.colsurfa.2020.125047
摘要
Electromagnetic interference (EMI) shielding materials have been intensively investigated by virtue of the wide attention of electronic devices, but the current research still meets great challenge, especially those prepared by textiles. Herein, a lightweight, wearable and durable fabric with exceptional EMI shielding performance and Joule heating property was fabricated based on the layer-by-layer (L-b-L) assembly approach involving 2D transition metal carbides/nitrides (MXenes) sheets and polyaniline (PANI) polymer alternatively assembled on the carbon fiber (CF) fabric through the strong interfacial interactions between them. The results indicated that the resultant PANI/MXene/CF fabric with only 0.55 mm-thickness by five-cycleL-b-L assembly possessed a high EMI shielding effectiveness (26.0 dB), favorable specific EMI SE (135.5 dB·cm3/g) and electrical conductivity (24.57 S/m). In addition, the produced fabrics also exhibited excellent voltage-driven Joule heating, satisfactory air permeability, and performance stability. One of the major advantages of our work is to achieve novel functionalities while retaining the flexibility, air permeability and even washability of textile substrates, the other is the superior EMI shielding performance with an absorption-dominated shielding mechanism, which can effectively decrease secondary electromagnetic wave pollution when used in the practical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI