亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning to Predict Binding Affinity

机器学习 人工智能 计算机科学 随机森林 卷积神经网络
作者
Gabriela Bitencourt-Ferreira,Walter Filgueira de Azevedo
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 251-273 被引量:8
标识
DOI:10.1007/978-1-4939-9752-7_16
摘要

Recent progress in the development of scientific libraries with machine-learning techniques paved the way for the implementation of integrated computational tools to predict ligand-binding affinity. The prediction of binding affinity uses the atomic coordinates of protein-ligand complexes. These new computational tools made application of a broad spectrum of machine-learning techniques to study protein-ligand interactions possible. The essential aspect of these machine-learning approaches is to train a new computational model by using technologies such as supervised machine-learning techniques, convolutional neural network, and random forest to mention the most commonly applied methods. In this chapter, we focus on supervised machine-learning techniques and their applications in the development of protein-targeted scoring functions for the prediction of binding affinity. We discuss the development of the program SAnDReS and its application to the creation of machine-learning models to predict inhibition of cyclin-dependent kinase and HIV-1 protease. Moreover, we describe the scoring function space, and how to use it to explain the development of targeted scoring functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
13秒前
肖肖发布了新的文献求助10
18秒前
ceeray23发布了新的文献求助20
24秒前
28秒前
42秒前
肖肖完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
48秒前
51秒前
null应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助爱笑的傲晴采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
科研通AI6应助lemon采纳,获得30
2分钟前
2分钟前
2分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
hahha发布了新的文献求助10
2分钟前
2分钟前
圆圆901234发布了新的文献求助10
2分钟前
英俊的铭应助hahha采纳,获得10
2分钟前
2分钟前
LHL完成签到,获得积分10
2分钟前
LeslieHu发布了新的文献求助10
2分钟前
2分钟前
圆圆901234完成签到,获得积分10
2分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628241
求助须知:如何正确求助?哪些是违规求助? 4716158
关于积分的说明 14963847
捐赠科研通 4785915
什么是DOI,文献DOI怎么找? 2555467
邀请新用户注册赠送积分活动 1516748
关于科研通互助平台的介绍 1477316