Edge effects on band gap energy in bilayer 2H-MoS2 under uniaxial strain

双层 材料科学 带隙 凝聚态物理 范德瓦尔斯力 超单元 电子能带结构 单轴张力 拉伤 极限抗拉强度 复合材料 光电子学 化学 物理 医学 生物化学 内科学 雷雨 有机化学 分子 气象学
作者
Liang Dong,Jin Wang,Raju R. Namburu,Terrance P. O’Regan,Madan Dubey,Avinash M. Dongare
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:117 (24) 被引量:22
标识
DOI:10.1063/1.4922811
摘要

The potential of ultrathin MoS2 nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS2 film. In this study, a bilayer MoS2 supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS2 film under uniaxial mechanical deformations. The supercell contains an MoS2 bottom layer and a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS2 flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS2 films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助俭朴夜雪采纳,获得10
刚刚
刚刚
頑皮燕姿完成签到,获得积分10
刚刚
刚刚
丁德乐可发布了新的文献求助10
1秒前
Minkslion完成签到,获得积分10
1秒前
於松完成签到,获得积分10
1秒前
1秒前
yyyy发布了新的文献求助10
2秒前
稳重无剑完成签到,获得积分10
3秒前
wuha完成签到,获得积分10
3秒前
3秒前
欢喜从霜完成签到,获得积分10
4秒前
Orange应助LiShin采纳,获得10
4秒前
4秒前
欣慰友梅完成签到,获得积分10
4秒前
5秒前
llllllll发布了新的文献求助10
5秒前
5秒前
5秒前
CC完成签到,获得积分10
5秒前
wwuu发布了新的文献求助10
6秒前
shenyanlei发布了新的文献求助10
6秒前
一汁蟹发布了新的文献求助20
7秒前
大个应助绿麦盲区采纳,获得10
7秒前
雨齐完成签到,获得积分10
7秒前
茶艺如何发布了新的文献求助10
7秒前
7秒前
kk完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
8秒前
yyyy完成签到,获得积分10
9秒前
好好学习天天向上完成签到,获得积分10
9秒前
欣慰友梅发布了新的文献求助10
9秒前
9秒前
10秒前
Akim应助易伊澤采纳,获得10
10秒前
格局太小完成签到,获得积分10
10秒前
10秒前
尔云完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762