A Deep Generative Approach for Rail Foreign Object Detections via Semisupervised Learning

自编码 人工智能 计算机科学 目标检测 深度学习 计算机视觉 鉴别器 水准点(测量) 对象(语法) 异常检测 光学(聚焦) 标杆管理 范围(计算机科学) 模式识别(心理学) 探测器 地理 业务 程序设计语言 营销 物理 光学 电信 大地测量学
作者
Tiange Wang,Zijun Zhang,Kwok‐Leung Tsui
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 459-468 被引量:25
标识
DOI:10.1109/tii.2022.3149931
摘要

The automated inspection and detection of foreign objects help prevent potential accidents and train derailments. Most existing approaches focus on the detection with prior labels, such as categories and locations of objects, and do not directly address detecting foreign objects of unknown categories, which can appear anytime on the rail track site. In this article, we develop a deep generative approach for detecting foreign objects without predefining the scope of objects. The detection procedure consists of the following three steps: first, the model composed of an autoencoder and a discriminator is developed via adversarial training based on normal rail images only; second, the detection of abnormal rail images is implemented based on the anomaly score obtained via the trained autoencoder; and finally, foreign objects are detected by filtering the subtle dissimilarity in normal areas and highlighting abnormal areas. The effectiveness of the proposed framework for the rail foreign object detection is validated with images collected by a train equipped with visual sensors. Computational results demonstrate that our proposal is capable to achieve an impressive performance on detecting numerous foreign objects. Moreover, two groups of benchmarking methods are employed to verify the superiority of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助俏皮的悟空采纳,获得30
1秒前
++完成签到 ,获得积分10
1秒前
星星完成签到,获得积分10
2秒前
脑洞疼应助bioinforiver采纳,获得80
2秒前
ZL发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
沐风完成签到,获得积分20
2秒前
3秒前
CipherSage应助澹台灭明采纳,获得10
3秒前
Oreaee完成签到,获得积分10
4秒前
fanfanzzz完成签到,获得积分10
4秒前
英姑应助MADKAI采纳,获得10
4秒前
mammoth发布了新的文献求助20
4秒前
4秒前
大个应助唉呦嘿采纳,获得10
5秒前
6秒前
Jenny应助觅桃乌龙采纳,获得10
6秒前
JL完成签到,获得积分10
7秒前
7秒前
123完成签到,获得积分10
7秒前
赘婿应助eric曾采纳,获得10
8秒前
8秒前
善学以致用应助小虎采纳,获得30
8秒前
lb发布了新的文献求助10
8秒前
自由的笑容完成签到,获得积分10
8秒前
9秒前
9秒前
mammoth完成签到,获得积分10
9秒前
科研通AI5应助仄兀采纳,获得10
10秒前
10秒前
10秒前
fishhh完成签到,获得积分10
10秒前
ruxing应助胖豆采纳,获得10
11秒前
good完成签到,获得积分10
11秒前
prosperp应助科研通管家采纳,获得10
11秒前
11秒前
Akim应助科研通管家采纳,获得10
11秒前
sweetbearm应助科研通管家采纳,获得10
11秒前
1221211应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762