Structural damage detection framework based on graph convolutional network directly using vibration data

稳健性(进化) 计算机科学 振动 卷积神经网络 结构健康监测 参数统计 图形 时域 噪音(视频) 数据挖掘 人工智能 模式识别(心理学) 结构工程 计算机视觉 工程类 声学 数学 理论计算机科学 图像(数学) 物理 统计 基因 生物化学 化学
作者
Viet-Hung Dang,Tien-Chuong Vu,Ba-Duan Nguyen,Quang‐Huy Nguyen,Tien-Dung Nguyen
出处
期刊:Structures [Elsevier BV]
卷期号:38: 40-51 被引量:36
标识
DOI:10.1016/j.istruc.2022.01.066
摘要

This study developed a novel, high accurate, and robust framework, termed g-SDDL, for structural damage detection (SDD) directly using vibration data without requiring hand-engineered features. Conventional structural health monitoring approaches require advanced techniques and domain expertise to preprocess vibration signals to achieve highly accurate results, but this may impair the possibility of performing real-time monitoring tasks. Thus, directly using vibration data is one of the research directions that opens a new path towards this ambitious goal, which is also the central subject of this study. For effectively using vibration data, one leverages the graph neural network to capture the inherent spatial correlation of sensor locations and the convolution operation to extract underlying vibration signal patterns. In addition, multiple g-SDDL models can be stacked together for addressing multi-damage scenarios. The proposed approach’s viability is quantitatively demonstrated via three case studies with increasing complexities from a 1D continuous concrete beam to a 2D frame structure and to a experimental database from the literature. High damage detection accuracy of more than 90% was consistently obtained, even for the multi-damage scenarios. Furthermore, the performance and robustness of g-SDDL were investigated through comparison, noise-injection, and parametric studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Amy完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
派大星完成签到,获得积分10
2秒前
3秒前
沉默的玩偶完成签到,获得积分10
3秒前
4秒前
念65发布了新的文献求助10
5秒前
小涵完成签到,获得积分10
5秒前
5秒前
打打应助阿花阿花采纳,获得10
6秒前
6秒前
派大星发布了新的文献求助10
6秒前
7秒前
咲韶完成签到,获得积分10
7秒前
yyyrrr完成签到,获得积分10
7秒前
8秒前
Owen应助要苦就苦别人采纳,获得10
9秒前
爆米花应助易哒哒采纳,获得10
9秒前
10秒前
燚燚完成签到,获得积分20
10秒前
10秒前
一十六发布了新的文献求助10
11秒前
12秒前
Moihan完成签到,获得积分10
12秒前
12秒前
SHENLE发布了新的文献求助10
13秒前
义气的猫咪完成签到,获得积分10
13秒前
八块腹肌发布了新的文献求助10
13秒前
13秒前
念65完成签到,获得积分20
13秒前
双儿完成签到,获得积分10
13秒前
eee完成签到,获得积分10
14秒前
Jt关闭了Jt文献求助
14秒前
14秒前
宝贝完成签到,获得积分10
14秒前
优秀的如冰关注了科研通微信公众号
14秒前
Xin完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609