Underwater acoustic target multi-attribute correlation perception method based on deep learning

相关性 水下 人工智能 声纳 计算机科学 模式识别(心理学) 噪音(视频) 深度学习 语音识别 感知 数学 地质学 海洋学 几何学 图像(数学) 神经科学 生物
作者
Honghui Yang,Junhao Li,Meiping Sheng
出处
期刊:Applied Acoustics [Elsevier]
卷期号:190: 108644-108644 被引量:28
标识
DOI:10.1016/j.apacoust.2022.108644
摘要

The underwater acoustic target recognition via passive sonar can extract the features of target attribute from the ship radiated noise to complete the recognition task. The underwater acoustic target is characterized by a variety of attributes and the correlation among them, and the attributes include ship types, ship size, propeller type, etc. The correlation contains the information of the joint distribution of multiple attributes, which is an important complement to target description. Existing underwater acoustic target recognition methods based on deep learning usually classify one attribute of the target without considering the correlation among attributes. In this paper, an underwater acoustic target multi-attribute correlation perception method based on deep learning is proposed. Firstly, deep time–frequency representations are extracted from time-domain ship radiated noise. Then, a group of neurons with learnable wights is designed to extract correlation deep features, which could model the correlation among multiple attributes. Finally, the correlation deep features are utilized to realize multi-attribute correlation perception. The results of visualization experiment show that the learned correlation is similar with the true correlation among the multiple attributes. And the results of prediction experiment show, by adding information of correlation among multi attributes, the proposed method achieves better recognition performance (accuracy is 82.1%). And in ship monitoring experiment, the proposed method achieves the furthest recognition distance and the most stable correct recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
henry发布了新的文献求助50
1秒前
瀚子完成签到,获得积分10
1秒前
3秒前
星辰大海应助爱德华兹俊采纳,获得10
3秒前
一一应助大大小小采纳,获得10
4秒前
一一应助大大小小采纳,获得10
4秒前
杨芷艳发布了新的文献求助10
4秒前
上官若男应助dfg采纳,获得30
5秒前
脑洞疼应助Ruiiiiii采纳,获得10
5秒前
6秒前
sygclever完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
忧郁的香魔完成签到,获得积分10
8秒前
小赞芽发布了新的文献求助10
9秒前
wwb完成签到,获得积分10
10秒前
10秒前
11秒前
yangxin614发布了新的文献求助10
11秒前
认真的瑛关注了科研通微信公众号
12秒前
单薄初蝶完成签到,获得积分10
12秒前
cyrong应助dong采纳,获得10
13秒前
薰硝壤应助小鱼采纳,获得50
13秒前
13秒前
科研通AI2S应助LOWRY采纳,获得10
15秒前
akakns完成签到 ,获得积分10
15秒前
赵哈哈完成签到,获得积分10
17秒前
不配.应助周浩宇采纳,获得10
18秒前
好事连连发布了新的文献求助10
18秒前
Brian完成签到,获得积分10
18秒前
有梦想的咸鱼完成签到,获得积分10
19秒前
19秒前
19秒前
慕青应助跳跃的香岚采纳,获得10
20秒前
华仔应助秋刀鱼不过期采纳,获得10
22秒前
25秒前
25秒前
结实曼凡发布了新的文献求助30
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135127
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775305
捐赠科研通 2441924
什么是DOI,文献DOI怎么找? 1298299
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600839