已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Underwater acoustic target multi-attribute correlation perception method based on deep learning

相关性 水下 人工智能 声纳 计算机科学 模式识别(心理学) 噪音(视频) 深度学习 语音识别 感知 数学 地质学 海洋学 几何学 图像(数学) 神经科学 生物
作者
Honghui Yang,Junhao Li,Meiping Sheng
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:190: 108644-108644 被引量:28
标识
DOI:10.1016/j.apacoust.2022.108644
摘要

The underwater acoustic target recognition via passive sonar can extract the features of target attribute from the ship radiated noise to complete the recognition task. The underwater acoustic target is characterized by a variety of attributes and the correlation among them, and the attributes include ship types, ship size, propeller type, etc. The correlation contains the information of the joint distribution of multiple attributes, which is an important complement to target description. Existing underwater acoustic target recognition methods based on deep learning usually classify one attribute of the target without considering the correlation among attributes. In this paper, an underwater acoustic target multi-attribute correlation perception method based on deep learning is proposed. Firstly, deep time–frequency representations are extracted from time-domain ship radiated noise. Then, a group of neurons with learnable wights is designed to extract correlation deep features, which could model the correlation among multiple attributes. Finally, the correlation deep features are utilized to realize multi-attribute correlation perception. The results of visualization experiment show that the learned correlation is similar with the true correlation among the multiple attributes. And the results of prediction experiment show, by adding information of correlation among multi attributes, the proposed method achieves better recognition performance (accuracy is 82.1%). And in ship monitoring experiment, the proposed method achieves the furthest recognition distance and the most stable correct recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaochenyu发布了新的文献求助10
1秒前
蚂蚁飞飞完成签到,获得积分10
2秒前
傲娇的曼香发布了新的文献求助250
2秒前
harmon发布了新的文献求助10
2秒前
5秒前
科研通AI6应助半_采纳,获得10
5秒前
失眠无声发布了新的文献求助10
5秒前
博ge完成签到 ,获得积分10
6秒前
当当完成签到 ,获得积分10
7秒前
liaojun完成签到,获得积分10
7秒前
Ally发布了新的文献求助10
7秒前
xunmacaoyan完成签到,获得积分10
8秒前
8秒前
fanfan完成签到,获得积分10
9秒前
走走发布了新的文献求助10
10秒前
10秒前
乐乐应助失眠无声采纳,获得10
11秒前
zhaochenyu完成签到,获得积分10
12秒前
liaojun发布了新的文献求助10
13秒前
15秒前
ronnie完成签到,获得积分10
17秒前
18秒前
20秒前
隐形曼青应助Ally采纳,获得10
21秒前
xcc完成签到,获得积分10
25秒前
Hello应助可靠的寒风采纳,获得10
26秒前
27秒前
可爱牛青完成签到,获得积分10
27秒前
28秒前
28秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
29秒前
小杭76应助哦吼吼采纳,获得10
30秒前
32秒前
123发布了新的文献求助10
33秒前
33秒前
33秒前
34秒前
cccccgggmmm完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396