Comparison of Response Surface Methodology and Artificial Neural Network approach in predicting the performance and properties of palm oil clinker fine modified asphalt mixtures

沥青 车辙 材料科学 响应面法 刚度 棕榈油 复合材料 环境科学 废物管理 工程类 化学 色谱法 农林复合经营
作者
Nura Shehu Aliyu Yaro,Muslich Hartadi Sutanto,Noor Zainab Habib,Madzlan Napiah,Aliyu Usman,Ashiru Muhammad
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:324: 126618-126618 被引量:46
标识
DOI:10.1016/j.conbuildmat.2022.126618
摘要

Recently with the increase in traffic loading, the traditional materials used for road construction deteriorate at a faster rate due to repetitive traffic loading which greatly necessitates bitumen modification to improve its quality. Amid an ever-increasing waste generation and disposal crisis, researchers came up with multiple ideas, however, the implementation was halted due to different practitioners' policies. Palm oil clinker (POC) waste is a prevalent waste dumped around the oil palm mill that pollutes the environment. To harness sustainability, this study utilizes varying dosages of POC fine (POCF) at 2%, 4%, 6%, and 8% to produce the POCF modified bitumen (POCF-MB). Also, the conventional and microstructure properties were evaluated. The objective of this study is to utilize response surface methodology (RSM) and artificial neural networks (ANN) to optimize and predict the stiffness modulus and rutting characteristic of asphalt mixtures prepared with POCF modified bitumen (POCF-MB). The conventional test results revealed that the incorporation of POCF improves the plain bitumen properties with enhanced stiffness and temperature susceptibility. Microstructural analysis highlighted that a new functional group Si-OH was formed because of the crystalline structure of Si-O that indicates bitumen properties enhancement with POCF inclusion. Two input and output variables were considered which are POCF dosage, test temperature, and stiffness modulus and rutting depth respectively. Results showed that all mixtures containing POCF-MB show better performance than the control mixture. Though, 6% POCF dosage shows improved performance compared to other mixtures increasing stiffness by 33.33% and 57.42% respectively at 25 °C and 40 °C, while rutting at 45 °C shows increased resistance by 25.91%. For both approaches, there was a high degree of agreement between the model-predicted values and actual. For the model statistical performance index, the RSM indicates that R2 for stiffness and rutting response were (99.700 and 99.668), RMSE (266.091 and 0.597), and MRE (68.793 and 3.841) respectively. The ANN R2 for stiffness and rutting response were (99.972 and 99.880), RMSE (61.605 and 0.280), and MRE (12.093 and 2.044) respectively. The ANN use 70% data for training, 15% data for testing, and 15% data for validation processes. The ANN model outperforms the RSM model for the prediction of POCF-MB asphalt mixtures' stiffness modulus and rutting properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助QQ采纳,获得10
刚刚
共享精神应助小勇仔采纳,获得10
刚刚
tao完成签到,获得积分10
刚刚
1秒前
Lee发布了新的文献求助10
1秒前
liujiahao完成签到,获得积分10
1秒前
1秒前
大力出奇迹完成签到,获得积分10
2秒前
勤奋天真完成签到 ,获得积分10
2秒前
2秒前
Qinzhiyuan1990完成签到 ,获得积分10
2秒前
铱凡完成签到,获得积分10
3秒前
weeqe完成签到,获得积分10
3秒前
玄机发布了新的文献求助10
3秒前
WATQ完成签到,获得积分10
4秒前
Yangfan发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Mende发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
追寻月饼完成签到,获得积分10
4秒前
lw不好找完成签到 ,获得积分10
4秒前
4秒前
5秒前
老迟到的芹菜完成签到,获得积分10
5秒前
赛特新思完成签到,获得积分10
5秒前
小二郎应助mumian采纳,获得10
5秒前
雪时晴完成签到,获得积分10
5秒前
6秒前
1177完成签到,获得积分10
6秒前
拾柒发布了新的文献求助10
6秒前
6秒前
桐桐应助曾经的白猫采纳,获得10
7秒前
lidm完成签到,获得积分10
7秒前
喜悦发卡完成签到,获得积分10
7秒前
开朗访曼发布了新的文献求助10
7秒前
兴十一完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006