Comparison of Response Surface Methodology and Artificial Neural Network approach in predicting the performance and properties of palm oil clinker fine modified asphalt mixtures

沥青 车辙 材料科学 响应面法 刚度 棕榈油 复合材料 环境科学 废物管理 工程类 化学 色谱法 农林复合经营
作者
Nura Shehu Aliyu Yaro,Muslich Hartadi Sutanto,Noor Zainab Habib,Madzlan Napiah,Aliyu Usman,Ashiru Muhammad
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:324: 126618-126618 被引量:46
标识
DOI:10.1016/j.conbuildmat.2022.126618
摘要

Recently with the increase in traffic loading, the traditional materials used for road construction deteriorate at a faster rate due to repetitive traffic loading which greatly necessitates bitumen modification to improve its quality. Amid an ever-increasing waste generation and disposal crisis, researchers came up with multiple ideas, however, the implementation was halted due to different practitioners' policies. Palm oil clinker (POC) waste is a prevalent waste dumped around the oil palm mill that pollutes the environment. To harness sustainability, this study utilizes varying dosages of POC fine (POCF) at 2%, 4%, 6%, and 8% to produce the POCF modified bitumen (POCF-MB). Also, the conventional and microstructure properties were evaluated. The objective of this study is to utilize response surface methodology (RSM) and artificial neural networks (ANN) to optimize and predict the stiffness modulus and rutting characteristic of asphalt mixtures prepared with POCF modified bitumen (POCF-MB). The conventional test results revealed that the incorporation of POCF improves the plain bitumen properties with enhanced stiffness and temperature susceptibility. Microstructural analysis highlighted that a new functional group Si-OH was formed because of the crystalline structure of Si-O that indicates bitumen properties enhancement with POCF inclusion. Two input and output variables were considered which are POCF dosage, test temperature, and stiffness modulus and rutting depth respectively. Results showed that all mixtures containing POCF-MB show better performance than the control mixture. Though, 6% POCF dosage shows improved performance compared to other mixtures increasing stiffness by 33.33% and 57.42% respectively at 25 °C and 40 °C, while rutting at 45 °C shows increased resistance by 25.91%. For both approaches, there was a high degree of agreement between the model-predicted values and actual. For the model statistical performance index, the RSM indicates that R2 for stiffness and rutting response were (99.700 and 99.668), RMSE (266.091 and 0.597), and MRE (68.793 and 3.841) respectively. The ANN R2 for stiffness and rutting response were (99.972 and 99.880), RMSE (61.605 and 0.280), and MRE (12.093 and 2.044) respectively. The ANN use 70% data for training, 15% data for testing, and 15% data for validation processes. The ANN model outperforms the RSM model for the prediction of POCF-MB asphalt mixtures' stiffness modulus and rutting properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助研一小刘采纳,获得10
刚刚
刚刚
水萝卜完成签到 ,获得积分10
1秒前
1秒前
高高完成签到,获得积分10
2秒前
甜甜晓露发布了新的文献求助10
2秒前
ChiDaiOLD发布了新的文献求助10
3秒前
4秒前
szl完成签到,获得积分10
4秒前
5秒前
orixero应助跳跃的静曼采纳,获得10
5秒前
诺奖离我十万八千里完成签到,获得积分10
5秒前
高高发布了新的文献求助10
5秒前
9秒前
深情安青应助机智的青槐采纳,获得10
9秒前
茶茶发布了新的文献求助10
9秒前
szl发布了新的文献求助10
9秒前
Lucas应助京阿尼采纳,获得10
10秒前
甜甜晓露完成签到,获得积分10
11秒前
科研通AI5应助qifa采纳,获得10
11秒前
shrike完成签到 ,获得积分10
11秒前
有魅力白开水完成签到,获得积分20
11秒前
小蒲完成签到 ,获得积分10
12秒前
万能图书馆应助大力鱼采纳,获得10
12秒前
13秒前
Rrr发布了新的文献求助10
14秒前
跳跃的静曼完成签到,获得积分10
14秒前
丰富的不惜完成签到,获得积分10
15秒前
16秒前
wfc完成签到,获得积分10
16秒前
浅梨涡完成签到 ,获得积分10
18秒前
JamesPei应助椰子熟了耶采纳,获得20
19秒前
hanyang965发布了新的文献求助10
19秒前
orixero应助喵呜采纳,获得10
19秒前
19秒前
19秒前
20秒前
en发布了新的文献求助10
20秒前
21秒前
白宝宝北北白应助氕氘氚采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808