Importance of Three-Body Problems and Protein–Protein Interactions in Proteolysis-Targeting Chimera Modeling: Insights from Molecular Dynamics Simulations

嵌合体(遗传学) 蛋白质水解 分子动力学 计算生物学 化学 计算化学 生物 生物化学 基因
作者
Wenqing Li,Jiabin Zhang,Li Guo,Qiantao Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (3): 523-532 被引量:39
标识
DOI:10.1021/acs.jcim.1c01150
摘要

Proteolysis-targeting chimeras (PROTACs) are a class of bifunctional molecules that can induce the ubiquitin degradation of its target protein by hijacking the E3 ligase to form a target protein-PROTAC-E3 ligase ternary complex. Its underlying principle has inspired the development of a wide range of protein degraders that are similar to or beyond PROTACs in recent years. The formation of the ternary complexes is the key to the success of PROTAC-induced protein degradation. Nevertheless, the lack of effective ternary complex modeling techniques has limited the application of computer-aided drug discovery tools to this emerging and fast developing new land in drug industry. Thus, in this study, we explored the application of the more physically sound molecular dynamics simulation and the molecular mechanics combined with the generalized Born and surface area continuum solvation (MM/GBSA) method to solve the underlying three-body problem in PROTAC modeling. We first verified the accuracy of our approach using a series of known Brd4 BD2 degraders. The calculated binding energy showed a good correlation with the experimental Kd values. The modeling of a unique property, namely, the α value, for PROTACs was also first and accurately performed to our best knowledge. The results also demonstrated the importance of PROTAC-induced protein–protein interactions in its modeling, either qualitatively or quantitatively. Finally, by standing on the success of earlier docking-based approaches, our protocol was also applied as a rescoring function in pose prediction. The results showed a notable improvement in reranking the initial poses generated from a modified Rosetta method, which was reportedly one of the best among a handful of PROTAC modeling approaches available in this field. We hope this work could provide a practical protocol and more insights to study the binding and the design of PROTACs and other protein degraders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈欣发布了新的文献求助10
1秒前
11231发布了新的文献求助10
2秒前
2秒前
Tong完成签到,获得积分10
2秒前
ronll发布了新的文献求助10
2秒前
悦耳白山发布了新的文献求助10
2秒前
dophin发布了新的文献求助10
3秒前
3秒前
xiaoguoxiaoguo完成签到,获得积分10
4秒前
warrior发布了新的文献求助10
4秒前
英姑应助包包琪采纳,获得10
4秒前
4秒前
SR完成签到,获得积分10
5秒前
6秒前
芝士发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
BowieHuang应助独特的高山采纳,获得10
8秒前
BowieHuang应助独特的高山采纳,获得10
8秒前
GZH完成签到,获得积分10
8秒前
yangxiaoya完成签到,获得积分10
9秒前
ronll完成签到,获得积分10
9秒前
马淑贤完成签到 ,获得积分10
10秒前
10秒前
汉堡包应助SLBY采纳,获得10
10秒前
zcm1999发布了新的文献求助10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
zhonglv7应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914