Importance of Three-Body Problems and Protein–Protein Interactions in Proteolysis-Targeting Chimera Modeling: Insights from Molecular Dynamics Simulations

嵌合体(遗传学) 蛋白质水解 分子动力学 计算生物学 化学 计算化学 生物 生物化学 基因
作者
Wenqing Li,Jiabin Zhang,Li Guo,Qiantao Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (3): 523-532 被引量:39
标识
DOI:10.1021/acs.jcim.1c01150
摘要

Proteolysis-targeting chimeras (PROTACs) are a class of bifunctional molecules that can induce the ubiquitin degradation of its target protein by hijacking the E3 ligase to form a target protein-PROTAC-E3 ligase ternary complex. Its underlying principle has inspired the development of a wide range of protein degraders that are similar to or beyond PROTACs in recent years. The formation of the ternary complexes is the key to the success of PROTAC-induced protein degradation. Nevertheless, the lack of effective ternary complex modeling techniques has limited the application of computer-aided drug discovery tools to this emerging and fast developing new land in drug industry. Thus, in this study, we explored the application of the more physically sound molecular dynamics simulation and the molecular mechanics combined with the generalized Born and surface area continuum solvation (MM/GBSA) method to solve the underlying three-body problem in PROTAC modeling. We first verified the accuracy of our approach using a series of known Brd4 BD2 degraders. The calculated binding energy showed a good correlation with the experimental Kd values. The modeling of a unique property, namely, the α value, for PROTACs was also first and accurately performed to our best knowledge. The results also demonstrated the importance of PROTAC-induced protein–protein interactions in its modeling, either qualitatively or quantitatively. Finally, by standing on the success of earlier docking-based approaches, our protocol was also applied as a rescoring function in pose prediction. The results showed a notable improvement in reranking the initial poses generated from a modified Rosetta method, which was reportedly one of the best among a handful of PROTAC modeling approaches available in this field. We hope this work could provide a practical protocol and more insights to study the binding and the design of PROTACs and other protein degraders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助饱满的问丝采纳,获得20
1秒前
隐形曼青应助乐观的鞋垫采纳,获得10
1秒前
2秒前
小小发布了新的文献求助10
2秒前
2秒前
薯条精完成签到 ,获得积分20
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
悲伤小蝴蝶完成签到,获得积分10
3秒前
dd发布了新的文献求助10
4秒前
碳酸钠完成签到,获得积分10
5秒前
以州完成签到,获得积分10
5秒前
xiemeili发布了新的文献求助10
6秒前
陌上发布了新的文献求助10
6秒前
diong发布了新的文献求助10
6秒前
7秒前
uoiewo完成签到,获得积分10
7秒前
fafafamc完成签到 ,获得积分10
8秒前
顺利萃发布了新的文献求助10
8秒前
在南方看北方完成签到,获得积分10
8秒前
优秀丸子完成签到,获得积分10
10秒前
11秒前
爱壹帆完成签到,获得积分10
11秒前
12秒前
12秒前
HOU应助卓惜筠采纳,获得10
12秒前
YUNA完成签到 ,获得积分10
12秒前
13秒前
糯米团子完成签到,获得积分10
14秒前
CipherSage应助DYZ采纳,获得10
14秒前
丘比特应助su采纳,获得10
14秒前
慕青应助开朗的之卉采纳,获得10
14秒前
能力越小责任越小完成签到,获得积分10
15秒前
顺利萃完成签到,获得积分10
15秒前
16秒前
勤恳元枫发布了新的文献求助10
17秒前
悟空发布了新的文献求助10
17秒前
18秒前
爱笑的蜗牛完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952