Importance of Three-Body Problems and Protein–Protein Interactions in Proteolysis-Targeting Chimera Modeling: Insights from Molecular Dynamics Simulations

嵌合体(遗传学) 蛋白质水解 分子动力学 计算生物学 化学 计算化学 生物 生物化学 基因
作者
Wenqing Li,Jiabin Zhang,Li Guo,Qiantao Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (3): 523-532 被引量:39
标识
DOI:10.1021/acs.jcim.1c01150
摘要

Proteolysis-targeting chimeras (PROTACs) are a class of bifunctional molecules that can induce the ubiquitin degradation of its target protein by hijacking the E3 ligase to form a target protein-PROTAC-E3 ligase ternary complex. Its underlying principle has inspired the development of a wide range of protein degraders that are similar to or beyond PROTACs in recent years. The formation of the ternary complexes is the key to the success of PROTAC-induced protein degradation. Nevertheless, the lack of effective ternary complex modeling techniques has limited the application of computer-aided drug discovery tools to this emerging and fast developing new land in drug industry. Thus, in this study, we explored the application of the more physically sound molecular dynamics simulation and the molecular mechanics combined with the generalized Born and surface area continuum solvation (MM/GBSA) method to solve the underlying three-body problem in PROTAC modeling. We first verified the accuracy of our approach using a series of known Brd4 BD2 degraders. The calculated binding energy showed a good correlation with the experimental Kd values. The modeling of a unique property, namely, the α value, for PROTACs was also first and accurately performed to our best knowledge. The results also demonstrated the importance of PROTAC-induced protein–protein interactions in its modeling, either qualitatively or quantitatively. Finally, by standing on the success of earlier docking-based approaches, our protocol was also applied as a rescoring function in pose prediction. The results showed a notable improvement in reranking the initial poses generated from a modified Rosetta method, which was reportedly one of the best among a handful of PROTAC modeling approaches available in this field. We hope this work could provide a practical protocol and more insights to study the binding and the design of PROTACs and other protein degraders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
5秒前
可爱的函函应助lily采纳,获得30
5秒前
6秒前
8秒前
9秒前
忧伤的飞鸟完成签到,获得积分10
10秒前
翟呼呼完成签到 ,获得积分10
12秒前
你的风筝应助柔柔柔柔子采纳,获得10
12秒前
changhao6787发布了新的文献求助10
12秒前
黎雪芳完成签到,获得积分10
13秒前
13秒前
好好活着关注了科研通微信公众号
13秒前
田様应助moon采纳,获得10
14秒前
是莉莉娅完成签到,获得积分10
14秒前
Planta完成签到,获得积分10
17秒前
椰子完成签到 ,获得积分10
17秒前
nenoaowu发布了新的文献求助10
17秒前
Albertxkcj发布了新的文献求助10
17秒前
今后应助标致的雨真采纳,获得30
18秒前
洋洋完成签到 ,获得积分10
19秒前
19秒前
21秒前
五斤老陈醋完成签到,获得积分10
21秒前
nenoaowu完成签到,获得积分10
22秒前
上官若男应助费老三采纳,获得10
22秒前
Jaikaran完成签到,获得积分10
22秒前
hmm发布了新的文献求助10
23秒前
24秒前
kfwxz2022完成签到,获得积分10
24秒前
会笑的光发布了新的文献求助10
25秒前
26秒前
谷粱安卉完成签到 ,获得积分10
26秒前
归尘发布了新的文献求助10
27秒前
木木完成签到,获得积分20
28秒前
漾黎完成签到,获得积分10
29秒前
zrs完成签到,获得积分10
30秒前
31秒前
艾泽拉斯的囚徒完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969782
求助须知:如何正确求助?哪些是违规求助? 3514601
关于积分的说明 11174816
捐赠科研通 3249899
什么是DOI,文献DOI怎么找? 1795080
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804886