Enhancing Peptide Nucleic Acid–Nanomaterial Interaction and Performance Improvement of Peptide Nucleic Acid-Based Nucleic Acid Detection by Using Electrostatic Effects

核酸 肽核酸 纳米材料 化学 DNA 荧光 胶体金 猝灭(荧光) 石墨烯 核糖核酸 组合化学 纳米技术 生物物理学 生物化学 纳米颗粒 材料科学 生物 基因 物理 量子力学
作者
Kriangsak Faikhruea,Ilada Choopara,Naraporn Somboonna,Wanchai Assavalapsakul,Byeang Hyean Kim,Tirayut Vilaivan
出处
期刊:ACS applied bio materials [American Chemical Society]
卷期号:5 (2): 789-800 被引量:2
标识
DOI:10.1021/acsabm.1c01177
摘要

Single-stranded peptide nucleic acid (PNA) probes interact strongly with several nanomaterials, and the interaction was diminished in the presence of complementary nucleic acid targets which forms the basis of many nucleic acid sensing platforms. As opposed to the negatively charged DNA probes, the charges on the PNA probes may be fine-tuned by incorporating amino acids with charged side chains. The contribution of electrostatic effects to the interaction between PNA probes and nanomaterials has been largely overlooked. This work reveals that electrostatic effects substantially enhanced the quenching of dye-labeled conformationally constrained pyrrolidinyl PNA probes by several nanomaterials including graphene oxide (GO), reduced graphene oxide, gold nanoparticles (AuNPs), and silver nanoparticles. The fluorescence quenching and the color change from red to purple in the case of AuNPs because of aggregation were inhibited in the presence of complementary nucleic acid targets. Thus, fluorescence and colorimetric assays for DNA and RNA that can distinguish even single-base-mismatched nucleic acids with improved sensitivity over conventional DNA probes were established. Both the GO- and AuNP-based sensing platforms have been successfully applied for the detection of real DNA and RNA samples in vitro and in living cells. This study emphasizes the active roles of electrostatic effects in the PNA-nanomaterial interactions, which paves the way toward improving the performance of PNA-nanomaterial based assays of nucleic acids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助韩倩茹采纳,获得10
刚刚
3秒前
5秒前
万能图书馆应助凶狠的期待采纳,获得100
7秒前
巧克力完成签到 ,获得积分10
8秒前
乐乐应助婷婷采纳,获得10
10秒前
风清扬发布了新的文献求助10
10秒前
深情安青应助萝卜鱼芋采纳,获得10
11秒前
JC发布了新的文献求助10
12秒前
15秒前
luo应助破晓星采纳,获得10
16秒前
17秒前
18秒前
qimiao完成签到,获得积分10
19秒前
李昕123发布了新的文献求助10
20秒前
桐桐应助科研通管家采纳,获得10
22秒前
ccm应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
23秒前
一叶知秋应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
小杭76应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
ZZY发布了新的文献求助10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
24秒前
fffF发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592