Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助果果糖YLJ采纳,获得10
1秒前
1秒前
ZE发布了新的文献求助10
2秒前
情怀应助Boniu_wang采纳,获得10
2秒前
栀子发布了新的文献求助10
2秒前
李萌萌发布了新的文献求助10
2秒前
2秒前
childe完成签到,获得积分10
2秒前
Epiphany完成签到,获得积分10
3秒前
3秒前
3秒前
今天看文献了吗完成签到,获得积分10
4秒前
mwj完成签到,获得积分10
4秒前
GsunW完成签到,获得积分10
4秒前
顾矜应助LT采纳,获得10
5秒前
Jing完成签到,获得积分10
5秒前
6秒前
科研通AI6应助迷人如冬采纳,获得10
7秒前
7秒前
魈玖发布了新的文献求助10
8秒前
荀煜祺发布了新的文献求助10
9秒前
9秒前
三月完成签到,获得积分10
9秒前
小汤完成签到 ,获得积分10
9秒前
顾矜应助拉姆采纳,获得10
10秒前
11秒前
11秒前
浮游应助宇老师采纳,获得10
11秒前
高高乌冬面完成签到,获得积分10
12秒前
12秒前
lenaimiao发布了新的文献求助10
13秒前
哭泣的丝发布了新的文献求助10
13秒前
14秒前
聪慧的正豪应助休息日采纳,获得20
14秒前
14秒前
17秒前
946发布了新的文献求助10
17秒前
lhr发布了新的文献求助10
17秒前
慕青应助顺顺顺采纳,获得10
18秒前
tangyong完成签到,获得积分0
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069868
求助须知:如何正确求助?哪些是违规求助? 4291111
关于积分的说明 13369607
捐赠科研通 4111377
什么是DOI,文献DOI怎么找? 2251468
邀请新用户注册赠送积分活动 1256618
关于科研通互助平台的介绍 1189158