亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情归尘发布了新的文献求助10
1秒前
优美荠完成签到,获得积分10
6秒前
17秒前
光合作用完成签到,获得积分10
20秒前
22秒前
芷兰丁香发布了新的文献求助10
22秒前
科研通AI6应助热情归尘采纳,获得10
23秒前
务实书包完成签到,获得积分10
25秒前
_xie发布了新的文献求助10
26秒前
27秒前
现代巧曼应助芷兰丁香采纳,获得10
31秒前
Humorous发布了新的文献求助10
33秒前
传奇3应助Humorous采纳,获得10
41秒前
hulahula完成签到 ,获得积分10
1分钟前
呼啦呼啦完成签到 ,获得积分10
1分钟前
pp完成签到 ,获得积分10
1分钟前
Lucas应助芷兰丁香采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
1分钟前
27完成签到 ,获得积分10
1分钟前
rwq完成签到 ,获得积分10
1分钟前
1分钟前
宇宇完成签到 ,获得积分0
1分钟前
1分钟前
小湛湛完成签到 ,获得积分10
2分钟前
SKY发布了新的文献求助10
2分钟前
2分钟前
SKY完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
gmchen发布了新的文献求助10
2分钟前
白云完成签到,获得积分10
2分钟前
沉默羔羊完成签到,获得积分10
2分钟前
白云发布了新的文献求助10
2分钟前
阿衡发布了新的文献求助10
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584602
求助须知:如何正确求助?哪些是违规求助? 4668380
关于积分的说明 14771348
捐赠科研通 4611557
什么是DOI,文献DOI怎么找? 2530027
邀请新用户注册赠送积分活动 1498971
关于科研通互助平台的介绍 1467441