Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科目三应助ZZW采纳,获得10
刚刚
打打应助Iridesent0v0采纳,获得10
刚刚
逝水无痕完成签到,获得积分10
1秒前
2秒前
shinian发布了新的文献求助20
2秒前
3秒前
ohnono发布了新的文献求助10
3秒前
莹莹啊发布了新的文献求助10
3秒前
hlx完成签到 ,获得积分10
4秒前
CAST1347发布了新的文献求助10
6秒前
天真玲发布了新的文献求助10
6秒前
顾矜应助务实的手套采纳,获得10
6秒前
悠悠悠幽谷完成签到,获得积分20
6秒前
6秒前
鹿靡完成签到,获得积分10
6秒前
梧梧完成签到,获得积分10
7秒前
刻苦靳应助zzzy采纳,获得10
7秒前
科研通AI6应助liang2508采纳,获得10
7秒前
小面包狗发布了新的文献求助10
7秒前
7秒前
传奇3应助Astralis采纳,获得10
7秒前
8秒前
顾矜应助baobaot采纳,获得10
8秒前
华佗完成签到,获得积分20
8秒前
Zhou发布了新的文献求助10
8秒前
lulu发布了新的文献求助30
8秒前
8秒前
淡人完成签到,获得积分10
9秒前
万能图书馆应助HelenShi采纳,获得10
9秒前
李爱国应助hongyintao采纳,获得10
10秒前
10秒前
10秒前
小蘑菇应助展锋采纳,获得10
10秒前
嘟嘟完成签到,获得积分10
11秒前
11秒前
gao完成签到,获得积分10
12秒前
12秒前
浮游应助靳若愚JinRy采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319277
求助须知:如何正确求助?哪些是违规求助? 4461300
关于积分的说明 13882880
捐赠科研通 4351936
什么是DOI,文献DOI怎么找? 2390315
邀请新用户注册赠送积分活动 1384082
关于科研通互助平台的介绍 1353750