Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxr完成签到,获得积分10
刚刚
单薄归尘发布了新的文献求助10
1秒前
小白果果发布了新的文献求助10
1秒前
xml发布了新的文献求助10
2秒前
Jasper应助西子阳采纳,获得10
2秒前
2秒前
李健的小迷弟应助yu采纳,获得10
2秒前
平常致远完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
lihua完成签到,获得积分10
3秒前
Meng发布了新的文献求助10
3秒前
camellia完成签到,获得积分10
4秒前
bkagyin应助无情语梦采纳,获得10
4秒前
cc完成签到,获得积分10
4秒前
共享精神应助细心的语蓉采纳,获得10
5秒前
动人的小馒头完成签到,获得积分10
5秒前
御舟观澜发布了新的文献求助10
5秒前
7秒前
佰斯特威应助qinsan采纳,获得10
7秒前
00K发布了新的文献求助10
8秒前
Xu完成签到,获得积分10
8秒前
sun完成签到,获得积分10
8秒前
zfs发布了新的文献求助10
8秒前
柴柴完成签到,获得积分10
9秒前
似水流年完成签到 ,获得积分10
9秒前
YR完成签到 ,获得积分10
10秒前
我是老大应助西子阳采纳,获得10
10秒前
42完成签到 ,获得积分10
10秒前
11秒前
嘻嘻完成签到 ,获得积分10
11秒前
12秒前
sun发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
无私的画卷完成签到,获得积分10
13秒前
小蘑菇应助橙子采纳,获得10
13秒前
风中的惊蛰完成签到,获得积分10
14秒前
不想干活应助搞怪的幻梅采纳,获得10
14秒前
14秒前
zhangweiji发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614444
求助须知:如何正确求助?哪些是违规求助? 4018649
关于积分的说明 12439260
捐赠科研通 3701425
什么是DOI,文献DOI怎么找? 2041187
邀请新用户注册赠送积分活动 1073927
科研通“疑难数据库(出版商)”最低求助积分说明 957600