Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助qqa采纳,获得10
刚刚
小马甲应助橙子皮采纳,获得10
刚刚
刚刚
Charlieite完成签到,获得积分20
4秒前
秋秋完成签到,获得积分10
4秒前
可靠的南露应助Leon采纳,获得30
4秒前
Rondab应助Leon采纳,获得10
4秒前
王淳完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
今后应助vvv采纳,获得10
5秒前
sdniuidifod发布了新的文献求助10
6秒前
卡卡西应助宾果消消气采纳,获得30
6秒前
朱晖发布了新的文献求助50
6秒前
7秒前
7秒前
YooM发布了新的文献求助10
9秒前
Charlieite发布了新的文献求助10
11秒前
ldx发布了新的文献求助10
11秒前
qqa发布了新的文献求助10
12秒前
13秒前
轩辕疾发布了新的文献求助10
13秒前
Leon完成签到,获得积分10
14秒前
15秒前
科研通AI2S应助mie采纳,获得10
15秒前
可乐完成签到,获得积分20
16秒前
16秒前
取法乎上发布了新的文献求助10
17秒前
沉默山灵完成签到,获得积分10
18秒前
18秒前
moon发布了新的文献求助10
18秒前
活力的雨雪完成签到,获得积分10
20秒前
21秒前
YooM发布了新的文献求助10
22秒前
天不会黑发布了新的文献求助10
22秒前
汉堡包应助童秋寒采纳,获得30
23秒前
TKTK完成签到,获得积分20
24秒前
无花果应助moon采纳,获得10
28秒前
BoBo完成签到 ,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969628
求助须知:如何正确求助?哪些是违规求助? 3514448
关于积分的说明 11174217
捐赠科研通 3249822
什么是DOI,文献DOI怎么找? 1795000
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804856