亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小草发布了新的文献求助10
3秒前
xinchi完成签到,获得积分10
7秒前
Jasper应助小泽采纳,获得10
7秒前
hhhhhh应助annathd采纳,获得10
14秒前
清飏举报ni求助涉嫌违规
37秒前
桐桐应助KSung采纳,获得10
45秒前
45秒前
45秒前
FashionBoy应助科研通管家采纳,获得10
45秒前
wy.he应助陶醉的烤鸡采纳,获得10
51秒前
dlfg完成签到,获得积分10
51秒前
58秒前
kd1412完成签到 ,获得积分10
59秒前
KSung发布了新的文献求助10
1分钟前
华仔应助XX采纳,获得10
1分钟前
清飏举报vivianzzz求助涉嫌违规
1分钟前
1分钟前
XX完成签到,获得积分20
1分钟前
2021完成签到 ,获得积分10
1分钟前
XX发布了新的文献求助10
1分钟前
情怀应助ceeray23采纳,获得20
1分钟前
Elthrai完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
小马完成签到,获得积分10
2分钟前
小马发布了新的文献求助10
2分钟前
科目三应助XX采纳,获得10
2分钟前
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
2分钟前
盛夏如花发布了新的文献求助80
2分钟前
2分钟前
aaa5a123完成签到 ,获得积分10
2分钟前
脑洞疼应助粉色大卡皮采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
lyy发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634707
求助须知:如何正确求助?哪些是违规求助? 4731892
关于积分的说明 14988959
捐赠科研通 4792423
什么是DOI,文献DOI怎么找? 2559546
邀请新用户注册赠送积分活动 1519820
关于科研通互助平台的介绍 1479929