Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的瑛完成签到,获得积分10
刚刚
浮游应助ww采纳,获得10
刚刚
森系女孩完成签到,获得积分10
2秒前
12345发布了新的文献求助10
2秒前
dududu发布了新的文献求助10
2秒前
3秒前
字符串完成签到,获得积分10
3秒前
3秒前
3秒前
vicki完成签到,获得积分10
3秒前
昔昔完成签到 ,获得积分10
4秒前
小卢很哇塞完成签到 ,获得积分10
5秒前
5秒前
5秒前
贤不闲发布了新的文献求助10
6秒前
沉静芒果关注了科研通微信公众号
6秒前
bkagyin应助12采纳,获得10
7秒前
英姑应助帅气书白采纳,获得10
7秒前
字符串发布了新的文献求助10
7秒前
加菲丰丰应助王腾飞采纳,获得120
7秒前
7秒前
vicki发布了新的文献求助10
8秒前
sun发布了新的文献求助10
9秒前
潘宁宁完成签到,获得积分10
9秒前
范yx发布了新的文献求助10
10秒前
小卢很哇塞关注了科研通微信公众号
11秒前
ww完成签到,获得积分20
11秒前
1111发布了新的文献求助10
12秒前
负责的凌波应助听宇采纳,获得30
13秒前
14秒前
15秒前
15秒前
AD钙钙钙发布了新的文献求助10
15秒前
JamesPei应助黎遥采纳,获得10
16秒前
miles发布了新的文献求助10
16秒前
诗雨发布了新的文献求助10
17秒前
乱世才子完成签到,获得积分10
19秒前
bestkomorebi发布了新的文献求助100
19秒前
1q完成签到,获得积分10
19秒前
颜九完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354035
求助须知:如何正确求助?哪些是违规求助? 4486507
关于积分的说明 13966675
捐赠科研通 4386923
什么是DOI,文献DOI怎么找? 2410096
邀请新用户注册赠送积分活动 1402435
关于科研通互助平台的介绍 1376249