亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气的断秋完成签到,获得积分10
5秒前
cy0824完成签到 ,获得积分10
16秒前
传奇3应助学术悍匪采纳,获得10
28秒前
Orange应助Carol采纳,获得10
31秒前
34秒前
学术悍匪发布了新的文献求助10
40秒前
乐乐应助冯宇采纳,获得10
40秒前
48秒前
冯宇发布了新的文献求助10
53秒前
FU发布了新的文献求助10
1分钟前
1分钟前
环走鱼尾纹完成签到 ,获得积分10
1分钟前
1分钟前
yang发布了新的文献求助10
1分钟前
ZanE完成签到,获得积分10
1分钟前
NexusExplorer应助学术悍匪采纳,获得10
1分钟前
1分钟前
FU发布了新的文献求助10
2分钟前
2分钟前
学术悍匪发布了新的文献求助10
2分钟前
ning完成签到 ,获得积分10
2分钟前
无花果应助一二采纳,获得10
2分钟前
2分钟前
天天天晴完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
yang发布了新的文献求助10
3分钟前
Yulanda完成签到 ,获得积分10
3分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
Yang完成签到 ,获得积分10
3分钟前
3分钟前
FU发布了新的文献求助10
3分钟前
Carol发布了新的文献求助10
4分钟前
文艺的立果完成签到,获得积分10
4分钟前
idea完成签到 ,获得积分10
4分钟前
桃洛璟完成签到,获得积分10
4分钟前
一二完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4814931
关于积分的说明 15080683
捐赠科研通 4816245
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532236
关于科研通互助平台的介绍 1490814