Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bzlish完成签到,获得积分10
1秒前
nb完成签到,获得积分10
1秒前
忧伤的如容完成签到,获得积分20
1秒前
清风竹舞完成签到,获得积分10
1秒前
2秒前
2秒前
共享精神应助普外科老白采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
陈俊豪发布了新的文献求助10
3秒前
宝也发布了新的文献求助10
4秒前
梦在远方完成签到 ,获得积分0
4秒前
5秒前
情怀应助银鱼在游采纳,获得10
5秒前
酷www发布了新的文献求助10
5秒前
Xieyusen发布了新的文献求助10
5秒前
jjy完成签到 ,获得积分10
5秒前
LSY完成签到 ,获得积分10
5秒前
小包完成签到,获得积分10
5秒前
JXDYYZK完成签到,获得积分10
6秒前
叶轮机械完成签到,获得积分10
6秒前
6秒前
婷儿完成签到 ,获得积分20
6秒前
marklee完成签到,获得积分10
7秒前
董H完成签到,获得积分10
7秒前
15134786587发布了新的文献求助10
7秒前
小马甲应助tt采纳,获得10
7秒前
东晓发布了新的文献求助10
7秒前
DCC完成签到,获得积分10
7秒前
尕翠完成签到,获得积分10
7秒前
隐形曼青应助禾七采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
月恒山辉完成签到,获得积分10
8秒前
8秒前
orixero应助Alex采纳,获得10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699170
求助须知:如何正确求助?哪些是违规求助? 5129604
关于积分的说明 15224865
捐赠科研通 4854105
什么是DOI,文献DOI怎么找? 2604467
邀请新用户注册赠送积分活动 1555994
关于科研通互助平台的介绍 1514275