Track Defect Detection for High-Speed Maglev Trains via Deep Learning

磁悬浮列车 磁道(磁盘驱动器) 火车 磁悬浮 定子 计算机科学 人工智能 工程类 汽车工程 电气工程 磁铁 地图学 操作系统 地理
作者
Yongxiang He,Jun Wu,Yaojia Zheng,Yuxin Zhang,Xiaobo Hong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:18
标识
DOI:10.1109/tim.2022.3151165
摘要

The high-speed maglev train is a new type of transportation. The long stator track plays a critical role in the levitation guidance and traction system. Therefore, its condition directly affects the operation of maglev trains. It is extremely important to detect the abnormal condition of high-speed maglev tracks to ensure the stable, safe, and reliable operation of the train. In this article, an onboard image detection system is designed for high-speed maglev tracks, which can accurately obtain the image of long stator tracks under the harsh conditions of limited installation space, insufficient illumination, and rapid operation of vehicles. High-speed maglev trains are not yet in widespread use. In China, there is currently only one demonstration operating line located in Shanghai, and the length of the track test line is limited. Therefore, the number of track images that can be acquired is extremely limited. In view of the lack of defective samples of high-speed maglev tracks, this article proposes a data enhancement method based on sample generation and image fusion to augment the dataset of defective samples. To improve the quality of generated high-speed maglev track defect images, a joint attention layer (JEA) combining squeeze-and-exception (SE) block and spatial attention module (SAM) is designed and introduced into the generative adversarial network (GAN). This work provides a data basis for the study of track defect detection of high-speed maglev trains. In addition, this article detects the defects of high-speed maglev tracks via deep learning-based target detection algorithms, which can automatically detect, accurately classify and locate the defects of stator surface and cables, filling the gap in the field of high-speed maglev track defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美山菡完成签到,获得积分10
刚刚
刚刚
机智初夏发布了新的文献求助10
1秒前
迎风映雪完成签到 ,获得积分10
1秒前
个性太英完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
ding应助aaa采纳,获得10
2秒前
千寻发布了新的文献求助10
2秒前
bbbbuuuoo完成签到,获得积分20
3秒前
脑洞疼应助朝槿采纳,获得10
3秒前
3秒前
3秒前
顺利毕业完成签到,获得积分10
3秒前
111发布了新的文献求助10
4秒前
勤恳碧蓉发布了新的文献求助10
5秒前
李健的粉丝团团长应助yao采纳,获得30
5秒前
5秒前
HCXsir完成签到,获得积分10
5秒前
5秒前
6秒前
Owen应助看起来不太强采纳,获得10
6秒前
星星发布了新的文献求助10
6秒前
6秒前
小不遛w完成签到,获得积分10
6秒前
6秒前
Owen应助机智初夏采纳,获得10
6秒前
泡芙完成签到 ,获得积分10
6秒前
7秒前
吞了大象的蛇完成签到,获得积分20
7秒前
喜多米430发布了新的文献求助10
8秒前
橘里完成签到,获得积分10
8秒前
李闻闻发布了新的文献求助10
8秒前
领导范儿应助高大的千秋采纳,获得30
8秒前
WEIMING发布了新的文献求助20
9秒前
luming完成签到,获得积分10
10秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416