Application of an infrared thermography-based model to detect pressure injuries: a prospective cohort study

医学 接收机工作特性 置信区间 危险系数 比例危险模型 热成像 队列 前瞻性队列研究 压力伤 内科学 外科 急诊医学 红外线的 物理 光学
作者
Xiaoqiong Jiang,Yu Wang,Yuxin Wang,Min Zhou,Pan Huang,Yufan Yang,Fang Peng,Hai-Shuang Wang,Xiaomei Li,Liping Zhang,Fuman Cai
出处
期刊:British Journal of Dermatology [Oxford University Press]
卷期号:187 (4): 571-579 被引量:8
标识
DOI:10.1111/bjd.21665
摘要

It is challenging to detect pressure injuries at an early stage of their development.To assess the ability of an infrared thermography (IRT)-based model, constructed using a convolution neural network, to reliably detect pressure injuries.A prospective cohort study compared validity in patients with pressure injury (n = 58) and without pressure injury (n = 205) using different methods. Each patient was followed up for 10 days.The optimal cut-off values of the IRT-based model were 0·53 for identifying tissue damage 1 day before visual detection of pressure injury and 0·88 for pressure injury detection on the day visual detection is possible. Kaplan-Meier curves and Cox proportional hazard regression model analysis showed that the risk of pressure injury increased 13-fold 1 day before visual detection with a cut-off value higher than 0·53 [hazard ratio (HR) 13·04, 95% confidence interval (CI) 6·32-26·91; P < 0·001]. The ability of the IRT-based model to detect pressure injuries [area under the receiver operating characteristic curve (AUC)lag 0 days , 0·98, 95% CI 0·95-1·00] was better than that of other methods.The IRT-based model is a useful and reliable method for clinical dermatologists and nurses to detect pressure injuries. It can objectively and accurately detect pressure injuries 1 day before visual detection and is therefore able to guide prevention earlier than would otherwise be possible. What is already known about this topic? Detection of pressure injuries at an early stage is challenging. Infrared thermography can be used for the physiological and anatomical evaluation of subcutaneous tissue abnormalities. A convolutional neural network is increasingly used in medical imaging analysis. What does this study add? The optimal cut-off values of the IRT-based model were 0·53 for identifying tissue damage 1 day before visual detection of pressure injury and 0·88 for pressure injury detection on the day visual detection is possible. Infrared thermography-based models can be used by clinical dermatologists and nurses to detect pressure injuries at an early stage objectively and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjcy应助lvsehx采纳,获得10
1秒前
2秒前
汽泡完成签到,获得积分10
3秒前
yu发布了新的文献求助10
4秒前
4秒前
豆豆发布了新的文献求助10
5秒前
充电宝应助tkx是流氓兔采纳,获得10
5秒前
lbyscu完成签到 ,获得积分10
6秒前
迷路博完成签到,获得积分10
7秒前
Lucas应助豆豆采纳,获得10
10秒前
草木方子完成签到,获得积分20
10秒前
14秒前
淡然幻珊完成签到,获得积分20
14秒前
杜青完成签到,获得积分10
16秒前
亦景零枫完成签到 ,获得积分10
18秒前
科研通AI5应助Okpooko采纳,获得10
19秒前
DONG发布了新的文献求助10
19秒前
深情安青应助Brian采纳,获得10
19秒前
22秒前
小晃晃完成签到 ,获得积分10
23秒前
24秒前
24秒前
25秒前
ZYH完成签到,获得积分10
26秒前
28秒前
DONG完成签到,获得积分10
28秒前
努力的安子完成签到,获得积分10
29秒前
29秒前
Okpooko发布了新的文献求助10
30秒前
医研丁真发布了新的文献求助30
32秒前
yan发布了新的文献求助10
32秒前
李爱国应助OOK采纳,获得10
32秒前
bella发布了新的文献求助10
33秒前
yu发布了新的文献求助10
41秒前
junyi完成签到,获得积分20
42秒前
wanci应助沙粒子采纳,获得10
42秒前
等待的剑身完成签到,获得积分10
43秒前
43秒前
张鱼丸子完成签到,获得积分10
44秒前
管靖易完成签到 ,获得积分10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344