染色质
瑞士/瑞士法郎
生物
分子生物学
基因
染色质重塑
SMARCA4型
基因表达
克隆(编程)
遗传学
细胞生物学
计算机科学
程序设计语言
作者
Xuan Ren,Chun She,Shihai Huang,Ting Yang,Yi Tong,Xi Yuan,Deshun Shi,Xiangping Li
摘要
The Switch/sucrose nonfermentable (SWI/SNF) chromatin remodelling complex is closely related to chromatin openness and gene transcriptional activity. To understand if the chromatin openness of donor cells was related to the development efficiency of somatic cell cloning embryos, two buffalo fetal fibroblasts (BFF), BFF1 and BFF3, with significantly different cloned blastocyst development rates (18.4% and 30.9% respectively), were selected in this study. The expression of SWI/SNF complex genes, chromatin openness, and transcript level of these two cell lines were analysed, and the effect of ATP on the expression of the SWI/SNF complex genes was further explored. The results showed that compared with BFF1, the expression of SWI/SNF complex family genes was higher in BFF3 at the G0/G1 phase, where SMARCC1, SMARCC2 and SMARCE1 were significantly different (p < .05). Assay of Transposase Accessible Chromatin sequencing (ATAC-seq) results showed that, at the genome-wide level, BFF3 had more open chromatin, especially which having more open chromatin peaks at SMARCA4, SMARCA2, and RBPMS2 (RNA Binding Protein, mRNA Processing Factor 2) sites. In total, 2,712 differentially expressed genes (DEGs) were identified by the RNA-Seq method, with 1380 up- and 1332 down-regulated genes in BFF3. Interestingly, the ATPase-related genes ATP1B1 and ATP11A were extreme significantly up-regulated in BFF3 (p < .01). The ATP content and the expression of SWI/SNF complex genes in both BFF1 and BFF3 decreased when treated with rotenone. The above results demonstrated that the SWI/SNF complex contributed to chromatin opening, and chromatin opening of donor cells was essential for cloned embryo development.
科研通智能强力驱动
Strongly Powered by AbleSci AI