Intelligent sort‐timing prediction for image‐activated cell sorting

分类 分类 计算机科学 排序算法 图像(数学) 人工智能 模式识别(心理学) 计算生物学 生物 情报检索 算法
作者
Yaqi Zhao,Akihiro Isozaki,Maik Herbig,Mika Hayashi,K. Hiramatsu,Sota Yamazaki,Naoko Kondo,Shinsuke Ohnuki,Yoshikazu Ohya,Nao Nitta,Keisuke Goda
出处
期刊:Cytometry Part A [Wiley]
卷期号:103 (1): 88-97 被引量:5
标识
DOI:10.1002/cyto.a.24664
摘要

Abstract Intelligent image‐activated cell sorting (iIACS) has enabled high‐throughput image‐based sorting of single cells with artificial intelligence (AI) algorithms. This AI‐on‐a‐chip technology combines fluorescence microscopy, AI‐based image processing, sort‐timing prediction, and cell sorting. Sort‐timing prediction is particularly essential due to the latency on the order of milliseconds between image acquisition and sort actuation, during which image processing is performed. The long latency amplifies the effects of the fluctuations in the flow speed of cells, leading to fluctuation and uncertainty in the arrival time of cells at the sort point on the microfluidic chip. To compensate for this fluctuation, iIACS measures the flow speed of each cell upstream, predicts the arrival timing of the cell at the sort point, and activates the actuation of the cell sorter appropriately. Here, we propose and demonstrate a machine learning technique to increase the accuracy of the sort‐timing prediction that would allow for the improvement of sort event rate, yield, and purity. Specifically, we trained an algorithm to predict the sort timing for morphologically heterogeneous budding yeast cells. The algorithm we developed used cell morphology, position, and flow speed as inputs for prediction and achieved 41.5% lower prediction error compared to the previously employed method based solely on flow speed. As a result, our technique would allow for an increase in the sort event rate of iIACS by a factor of ~2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
April发布了新的文献求助10
1秒前
shinn发布了新的文献求助10
2秒前
xutao完成签到,获得积分10
2秒前
LJX完成签到,获得积分10
2秒前
3秒前
3秒前
Owen应助oyx53采纳,获得10
4秒前
5秒前
tomorrow发布了新的文献求助10
6秒前
6秒前
ffnvv完成签到,获得积分10
6秒前
Akim应助沉静的樱桃采纳,获得10
6秒前
杉杉小趴菜完成签到,获得积分10
6秒前
rationality发布了新的文献求助10
7秒前
青年才俊发布了新的文献求助10
7秒前
7秒前
an完成签到,获得积分20
7秒前
飞翔的鸣发布了新的文献求助10
8秒前
yqx发布了新的文献求助30
8秒前
8秒前
slin_sjtu完成签到,获得积分0
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995