Intelligent sort‐timing prediction for image‐activated cell sorting

分类 分类 计算机科学 排序算法 图像(数学) 人工智能 模式识别(心理学) 计算生物学 生物 情报检索 算法
作者
Yaqi Zhao,Akihiro Isozaki,Maik Herbig,Mika Hayashi,K. Hiramatsu,Sota Yamazaki,Naoko Kondo,Shinsuke Ohnuki,Yoshikazu Ohya,Nao Nitta,Keisuke Goda
出处
期刊:Cytometry Part A [Wiley]
卷期号:103 (1): 88-97 被引量:5
标识
DOI:10.1002/cyto.a.24664
摘要

Abstract Intelligent image‐activated cell sorting (iIACS) has enabled high‐throughput image‐based sorting of single cells with artificial intelligence (AI) algorithms. This AI‐on‐a‐chip technology combines fluorescence microscopy, AI‐based image processing, sort‐timing prediction, and cell sorting. Sort‐timing prediction is particularly essential due to the latency on the order of milliseconds between image acquisition and sort actuation, during which image processing is performed. The long latency amplifies the effects of the fluctuations in the flow speed of cells, leading to fluctuation and uncertainty in the arrival time of cells at the sort point on the microfluidic chip. To compensate for this fluctuation, iIACS measures the flow speed of each cell upstream, predicts the arrival timing of the cell at the sort point, and activates the actuation of the cell sorter appropriately. Here, we propose and demonstrate a machine learning technique to increase the accuracy of the sort‐timing prediction that would allow for the improvement of sort event rate, yield, and purity. Specifically, we trained an algorithm to predict the sort timing for morphologically heterogeneous budding yeast cells. The algorithm we developed used cell morphology, position, and flow speed as inputs for prediction and achieved 41.5% lower prediction error compared to the previously employed method based solely on flow speed. As a result, our technique would allow for an increase in the sort event rate of iIACS by a factor of ~2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的霆应助归海若采纳,获得10
1秒前
1秒前
无花果应助精明晓刚采纳,获得10
2秒前
领导范儿应助Chenbiao采纳,获得10
2秒前
3秒前
4秒前
乐柚刘完成签到,获得积分20
4秒前
852应助wumingcaos采纳,获得10
4秒前
斯文败类应助hajf采纳,获得100
4秒前
5秒前
KYJR完成签到,获得积分10
5秒前
5秒前
樱子完成签到 ,获得积分10
5秒前
小鱼完成签到,获得积分10
5秒前
6秒前
6秒前
龙猫爱看书完成签到,获得积分10
6秒前
7秒前
不够萌完成签到,获得积分20
7秒前
MX完成签到,获得积分20
7秒前
libaojunok发布了新的文献求助10
7秒前
传奇3应助Leohp采纳,获得10
8秒前
幸福羽毛完成签到,获得积分10
8秒前
9秒前
M.完成签到,获得积分10
11秒前
xyzlancet发布了新的文献求助10
11秒前
ohno耶耶耶完成签到,获得积分10
11秒前
MX发布了新的文献求助20
12秒前
12秒前
研友Bn发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
无花果应助Chenbiao采纳,获得10
13秒前
芝士球球应助小周采纳,获得20
14秒前
卢小白完成签到,获得积分10
15秒前
15秒前
闪闪的时光完成签到 ,获得积分10
15秒前
16秒前
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227601
求助须知:如何正确求助?哪些是违规求助? 2875589
关于积分的说明 8191848
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373128
科研通“疑难数据库(出版商)”最低求助积分说明 646685
邀请新用户注册赠送积分活动 621178