Features for image processing of OCT images for seam tracking applications in laser welding

人工智能 计算机视觉 图像处理 特征(语言学) 特征提取 计算机科学 接头(建筑物) 目标检测 模式识别(心理学) 工程类 图像(数学) 建筑工程 哲学 语言学
作者
Thomas Will,Eric Eschner,Michael Schmidt
出处
期刊:Journal of Laser Applications [Laser Institute of America]
卷期号:34 (3) 被引量:5
标识
DOI:10.2351/7.0000673
摘要

The coaxial integration of optical coherence tomography (OCT) enables the determination of surface topography and measurement of object features along the optical path within laser machining. The measurement of surface information from the processed workpiece allows for the identification of features from the joint configuration and the subsequent control of the welding process by seam tracking. State-of-the-art seam tracking approaches are based on monochromatic cameras or laser triangulation. Typically, these approaches apply line segmentations for the identification of the joint position. The interferometric measurement method of OCT gives rise to the identification of new features for image processing in seam tracking. In this work, we identify specific noise components and features based on the theoretical background of OCT for image processing in seam tracking applications. Two different features are derived for the detection of arbitrary joint configurations with corresponding systematic image processing approaches. In the first step, we show the applicability of line detection methods for feature detection of arbitrary joint configurations. The necessary evaluation algorithm for case sensitivity and limitations (e.g., chamfer) in detecting different joint geometries are discussed. In the second step, we show an approach in feature extraction with feature detectors (e.g., ORB, SURF) for a new image feature. Here, significant image space from (multiple) reflections at the joint position is used for joint detection. The detectability is discussed depending on the joint configuration. The results show good suitability of both features for seam tracking applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
huohuo应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
YUMI发布了新的文献求助10
4秒前
5秒前
加油小李完成签到 ,获得积分10
5秒前
月明发布了新的文献求助10
6秒前
chentle发布了新的文献求助10
6秒前
7秒前
蜡笔小新完成签到 ,获得积分10
9秒前
CCCCPUTA发布了新的文献求助10
10秒前
janice发布了新的文献求助10
11秒前
Lily完成签到,获得积分10
12秒前
fangling完成签到,获得积分10
13秒前
15秒前
完美世界应助allucky采纳,获得10
16秒前
17秒前
科研通AI5应助hihi采纳,获得10
17秒前
18秒前
科研通AI5应助自信的以旋采纳,获得10
19秒前
归诚完成签到,获得积分10
20秒前
白杨木影子被拉长完成签到,获得积分10
21秒前
21秒前
月明完成签到,获得积分10
22秒前
归诚发布了新的文献求助10
22秒前
鱼鱼鱼发布了新的文献求助10
23秒前
有点意思完成签到,获得积分10
24秒前
樊尔风完成签到,获得积分10
24秒前
huan发布了新的文献求助10
27秒前
css1997发布了新的文献求助10
27秒前
星辰大海应助CCCCPUTA采纳,获得10
27秒前
aiw完成签到,获得积分10
27秒前
星辰大海应助谦让的溪流采纳,获得10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425