A knowledge-based method for tool path planning of large-sized parts

计算机科学 过程(计算) 路径(计算) 特征(语言学) 运动规划 知识库 数据挖掘 机械加工 汽车工业 帧(网络) 设计结构矩阵 发电机(电路理论) 人工智能 系统工程 工程类 机器人 机械工程 电信 哲学 语言学 功率(物理) 物理 量子力学 航空航天工程 操作系统 程序设计语言
作者
Jing Li,YiHao Lu,Nanyan Shen,Fan Jiangchuan,Hui Qian
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117685-117685
标识
DOI:10.1016/j.eswa.2022.117685
摘要

Proper tool paths ensure the high-efficiency and high-quality machining of workpiece. The current tool path planning method is inadequate to meet the complex process requirements for the complex workpiece of abundant local features. Due to the lack of ability of independent process decision-making, the planning effect is still heavily dependent on human experience and the planning is time-consuming and laborious, which is not conducive to shortening development cycle of new products. Therefore, a novel knowledge-based method for tool path planning is proposed in this paper. The proposed method can automatically plan the tool path that meets the requirements of the machining process by the adaptive process decision-making according to the perceived features of complex workpiece. The knowledge extraction method based on the syntactic dependency analysis is used to extract named entities in the process document. And the correctly classified entities are filled in the nodes of knowledge model represented by the form of frame to finish the establishment of process knowledge base. Then, with the help of feature extraction module based on the hybrid clustering method, the semantic segmentation of the point cloud of the workpiece is completed, and the Feature Matrix (FM) is formed. This matrix is used to provide feature information required for process decision, including Feature Vector (FV) and Structure Description Matrix (SDM). Finally, the tool path is generated in the Path Generator. At last, an automatic path planning system is developed for the painting process of automotive exterior. The planned paths are tested for 20 types of bumpers, where the chromatic aberration ΔE of each product is less than 1.4; both the average thickness of each paint and the requirement of production rate are satisfactory. These test results verify the effectiveness of the proposed tool path planning method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
benben完成签到,获得积分10
1秒前
wjq完成签到,获得积分10
1秒前
1秒前
2秒前
亓亓完成签到 ,获得积分10
2秒前
2秒前
phz发布了新的文献求助10
3秒前
3秒前
Stephen完成签到,获得积分10
3秒前
shengChen完成签到,获得积分10
3秒前
3秒前
怎么睡不醒完成签到 ,获得积分10
3秒前
CipherSage应助沉静的迎荷采纳,获得10
4秒前
彩色铅笔完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
淡定的思松应助通~采纳,获得10
5秒前
ycp完成签到,获得积分10
5秒前
wanci应助cc采纳,获得10
5秒前
泽烺木完成签到,获得积分10
5秒前
duizhang完成签到,获得积分10
5秒前
简单茗发布了新的文献求助10
6秒前
6秒前
DAYTOY应助LJL采纳,获得10
7秒前
qianf完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
Zn应助ZZZpp采纳,获得10
8秒前
脑洞疼应助喵呜采纳,获得10
9秒前
Monik发布了新的文献求助10
9秒前
花开米兰城完成签到,获得积分10
9秒前
18485649437完成签到 ,获得积分10
9秒前
dyh6802发布了新的文献求助10
9秒前
浅梦完成签到,获得积分10
10秒前
费米子完成签到,获得积分20
10秒前
宜一发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794