A knowledge-based method for tool path planning of large-sized parts

计算机科学 过程(计算) 路径(计算) 特征(语言学) 运动规划 知识库 数据挖掘 机械加工 汽车工业 帧(网络) 设计结构矩阵 发电机(电路理论) 人工智能 系统工程 工程类 机器人 操作系统 物理 哲学 航空航天工程 功率(物理) 程序设计语言 机械工程 电信 量子力学 语言学
作者
Jing Li,YiHao Lu,Nanyan Shen,Fan Jiangchuan,Hui Qian
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117685-117685
标识
DOI:10.1016/j.eswa.2022.117685
摘要

Proper tool paths ensure the high-efficiency and high-quality machining of workpiece. The current tool path planning method is inadequate to meet the complex process requirements for the complex workpiece of abundant local features. Due to the lack of ability of independent process decision-making, the planning effect is still heavily dependent on human experience and the planning is time-consuming and laborious, which is not conducive to shortening development cycle of new products. Therefore, a novel knowledge-based method for tool path planning is proposed in this paper. The proposed method can automatically plan the tool path that meets the requirements of the machining process by the adaptive process decision-making according to the perceived features of complex workpiece. The knowledge extraction method based on the syntactic dependency analysis is used to extract named entities in the process document. And the correctly classified entities are filled in the nodes of knowledge model represented by the form of frame to finish the establishment of process knowledge base. Then, with the help of feature extraction module based on the hybrid clustering method, the semantic segmentation of the point cloud of the workpiece is completed, and the Feature Matrix (FM) is formed. This matrix is used to provide feature information required for process decision, including Feature Vector (FV) and Structure Description Matrix (SDM). Finally, the tool path is generated in the Path Generator. At last, an automatic path planning system is developed for the painting process of automotive exterior. The planned paths are tested for 20 types of bumpers, where the chromatic aberration ΔE of each product is less than 1.4; both the average thickness of each paint and the requirement of production rate are satisfactory. These test results verify the effectiveness of the proposed tool path planning method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SY发布了新的文献求助10
刚刚
1秒前
xiaofanwang完成签到,获得积分10
1秒前
2秒前
2秒前
左丘冥完成签到,获得积分10
3秒前
3秒前
内向的小虾米完成签到,获得积分10
4秒前
迪迪张完成签到,获得积分10
4秒前
桐桐应助小张同学采纳,获得10
4秒前
阳6完成签到 ,获得积分10
4秒前
xiaojin完成签到,获得积分10
5秒前
liu完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
大锅逢饭完成签到,获得积分10
5秒前
5秒前
志小天完成签到,获得积分10
6秒前
7秒前
自觉志泽发布了新的文献求助10
7秒前
ping完成签到 ,获得积分10
7秒前
7秒前
米子哈发布了新的文献求助10
8秒前
华仔应助刘奎冉采纳,获得30
8秒前
研友Bn完成签到 ,获得积分10
9秒前
9秒前
10秒前
xinghe123发布了新的文献求助10
10秒前
酷酷问薇完成签到,获得积分20
11秒前
11秒前
H_完成签到,获得积分10
11秒前
2024dsb完成签到 ,获得积分10
12秒前
12秒前
西行纪发布了新的文献求助10
13秒前
DreamSeker8完成签到,获得积分10
13秒前
科研通AI6应助Scorpio采纳,获得30
13秒前
13秒前
认真浩宇发布了新的文献求助10
14秒前
坚强小虾米完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809