A knowledge-based method for tool path planning of large-sized parts

计算机科学 过程(计算) 路径(计算) 特征(语言学) 运动规划 知识库 数据挖掘 机械加工 汽车工业 帧(网络) 设计结构矩阵 发电机(电路理论) 人工智能 系统工程 工程类 机器人 操作系统 物理 哲学 航空航天工程 功率(物理) 程序设计语言 机械工程 电信 量子力学 语言学
作者
Jing Li,YiHao Lu,Nanyan Shen,Fan Jiangchuan,Hui Qian
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117685-117685
标识
DOI:10.1016/j.eswa.2022.117685
摘要

Proper tool paths ensure the high-efficiency and high-quality machining of workpiece. The current tool path planning method is inadequate to meet the complex process requirements for the complex workpiece of abundant local features. Due to the lack of ability of independent process decision-making, the planning effect is still heavily dependent on human experience and the planning is time-consuming and laborious, which is not conducive to shortening development cycle of new products. Therefore, a novel knowledge-based method for tool path planning is proposed in this paper. The proposed method can automatically plan the tool path that meets the requirements of the machining process by the adaptive process decision-making according to the perceived features of complex workpiece. The knowledge extraction method based on the syntactic dependency analysis is used to extract named entities in the process document. And the correctly classified entities are filled in the nodes of knowledge model represented by the form of frame to finish the establishment of process knowledge base. Then, with the help of feature extraction module based on the hybrid clustering method, the semantic segmentation of the point cloud of the workpiece is completed, and the Feature Matrix (FM) is formed. This matrix is used to provide feature information required for process decision, including Feature Vector (FV) and Structure Description Matrix (SDM). Finally, the tool path is generated in the Path Generator. At last, an automatic path planning system is developed for the painting process of automotive exterior. The planned paths are tested for 20 types of bumpers, where the chromatic aberration ΔE of each product is less than 1.4; both the average thickness of each paint and the requirement of production rate are satisfactory. These test results verify the effectiveness of the proposed tool path planning method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助MX120251336采纳,获得30
1秒前
桐桐应助lily采纳,获得10
1秒前
Willwzh发布了新的文献求助10
1秒前
淡然幻波发布了新的文献求助20
2秒前
zoe发布了新的文献求助10
2秒前
ashley325完成签到,获得积分10
2秒前
在水一方应助爱上秋风采纳,获得10
3秒前
专注白昼完成签到,获得积分10
3秒前
一涵呀发布了新的文献求助10
4秒前
4秒前
4秒前
zoe11发布了新的文献求助10
5秒前
华仔应助asiya采纳,获得10
5秒前
飞翔完成签到,获得积分10
6秒前
shuenghei完成签到,获得积分10
7秒前
Cai发布了新的文献求助10
7秒前
zxd发布了新的文献求助10
8秒前
yuyu完成签到,获得积分10
8秒前
8秒前
风中书竹完成签到,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
陈颖完成签到,获得积分10
9秒前
yan发布了新的文献求助10
9秒前
二柱子发布了新的文献求助10
10秒前
世安发布了新的文献求助10
10秒前
10秒前
LLL完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
FashionBoy应助追寻的书竹采纳,获得10
13秒前
13秒前
14秒前
丝绒发布了新的文献求助10
14秒前
英俊的铭应助欣慰的妙菱采纳,获得10
15秒前
NI完成签到 ,获得积分10
15秒前
Lizhenzhen123完成签到,获得积分10
16秒前
16秒前
墨子给期刊的求助进行了留言
16秒前
future发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718326
求助须知:如何正确求助?哪些是违规求助? 5252062
关于积分的说明 15285429
捐赠科研通 4868586
什么是DOI,文献DOI怎么找? 2614247
邀请新用户注册赠送积分活动 1564094
关于科研通互助平台的介绍 1521578