光催化
材料科学
铜
催化作用
三嗪
扫描透射电子显微镜
吸附
共价键
扩展X射线吸收精细结构
选择性
纳米技术
可见光谱
光化学
透射电子显微镜
化学工程
光电子学
吸收光谱法
化学
光学
物理化学
有机化学
高分子化学
冶金
工程类
物理
作者
Guocheng Huang,Qing Niu,Yuxin He,Jinjin Tian,Mingbin Gao,Chaoyang Li,Ning An,Jinhong Bi,Jiangwei Zhang
出处
期刊:Nano Research
[Springer Nature]
日期:2022-06-23
卷期号:15 (9): 8001-8009
被引量:31
标识
DOI:10.1007/s12274-022-4629-3
摘要
Converting CO2 into carbonaceous fuels via photocatalysis represents an appealing strategy to simultaneously alleviate the energy crisis and associated environmental problems, yet designing with high photoreduction activity catalysts remains a compelling challenge. Here, combining the merits of highly porous structure and maximum atomic efficiency, we rationally constructed covalent triazine-based frameworks (CTFs) anchoring copper single atoms (Cu−SA/CTF) photocatalysts for efficient CO2 conversion. The Cu single atoms were visualized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and coordination structure of Cu−N−C2 sites was revealed by extended X-ray absorption fine structure (EXAFS) analyses. The as-prepared Cu−SA/CTF photocatalysts exhibited superior photocatalytic CO2 conversion to CH4 performance associated with a high selectivity of 98.31%. Significantly, the introduction of Cu single atoms endowed the Cu−SA/CTF catalysts with increased CO2 adsorption capacity, strengthened visible light responsive ability, and improved the photogenerated carriers separation efficiency, thus enhancing the photocatalytic activity. This work provides useful guidelines for designing robust visible light responsive photoreduction CO2 catalysts on the atomic scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI