Learning Relationship-Enhanced Semantic Graph for Fine-Grained Image–Text Matching

计算机科学 人工智能 图形 自然语言处理 匹配(统计) 语义匹配 图像(数学) 情报检索 理论计算机科学 数学 统计
作者
Xin Liu,Yi He,Yiu‐ming Cheung,Xing Xu,Nannan Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 948-961 被引量:12
标识
DOI:10.1109/tcyb.2022.3179020
摘要

Image–text matching of natural scenes has been a popular research topic in both computer vision and natural language processing communities. Recently, fine-grained image–text matching has shown its significant advance in inferring the high-level semantic correspondence by aggregating pairwise region–word similarity, but it remains challenging mainly due to insufficient representation of high-order semantic concepts and their explicit connections in one modality as its matched in another modality. To tackle this issue, we propose a relationship-enhanced semantic graph (ReSG) model, which can improve the image–text representations by learning their locally discriminative semantic concepts and then organizing their relationships in a contextual order. To be specific, two tailored graph encoders, visual relationship-enhanced graph (VReG) and textual relationship-enhanced graph (TReG), are respectively exploited to encode the high-level semantic concepts of corresponding instances and their semantic relationships. Meanwhile, the representations of each graph node are optimized by aggregating semantically contextual information to enhance the node-level semantic correspondence. Further, the hard-negative triplet ranking loss, center hinge loss, and positive–negative margin loss are jointly leveraged to learn the fine-grained correspondence between the ReSG representations of image and text, whereby the discriminative cross-modal embeddings can be explicitly obtained to benefit various image–text matching tasks in a more interpretable way. Extensive experiments verify the advantages of the proposed fine-grained graph matching approach, by achieving the state-of-the-art image–text matching results on public benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZC完成签到,获得积分10
刚刚
msk完成签到 ,获得积分10
刚刚
考研小白完成签到,获得积分10
刚刚
研友_LMpo68完成签到 ,获得积分10
1秒前
Becky完成签到 ,获得积分10
1秒前
孙总完成签到,获得积分10
1秒前
281911480完成签到,获得积分10
2秒前
yu完成签到 ,获得积分10
2秒前
不知完成签到 ,获得积分10
2秒前
Darsine完成签到,获得积分10
2秒前
双楠完成签到,获得积分10
3秒前
vv发布了新的文献求助20
3秒前
君君完成签到,获得积分10
4秒前
奇怪的茶叶菌完成签到,获得积分10
4秒前
xiaopihaier完成签到,获得积分10
4秒前
负责金毛完成签到,获得积分10
5秒前
andy_lee完成签到,获得积分10
6秒前
潇洒的天与完成签到,获得积分10
6秒前
6秒前
Tianling完成签到,获得积分0
6秒前
liyiren完成签到,获得积分10
7秒前
大模型应助meng采纳,获得10
7秒前
fuguier发布了新的文献求助10
8秒前
lc完成签到,获得积分10
8秒前
小路完成签到,获得积分10
10秒前
liaodongjun完成签到,获得积分10
11秒前
11秒前
烂漫夜梦完成签到,获得积分10
11秒前
可可完成签到,获得积分10
12秒前
Aloha完成签到 ,获得积分10
12秒前
混子小高完成签到 ,获得积分10
13秒前
螳螂腿子完成签到,获得积分10
13秒前
跳跃完成签到,获得积分10
13秒前
xiaobin完成签到 ,获得积分10
14秒前
kysl完成签到,获得积分10
14秒前
刘珍荣完成签到,获得积分10
14秒前
modesty发布了新的文献求助10
14秒前
菜菜鱼完成签到,获得积分10
15秒前
yirenli完成签到,获得积分10
15秒前
冷静完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478