Learning Relationship-Enhanced Semantic Graph for Fine-Grained Image–Text Matching

计算机科学 人工智能 图形 自然语言处理 匹配(统计) 语义匹配 图像(数学) 情报检索 理论计算机科学 数学 统计
作者
Xin Liu,Yi He,Yiu‐ming Cheung,Xing Xu,Nannan Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 948-961 被引量:10
标识
DOI:10.1109/tcyb.2022.3179020
摘要

Image–text matching of natural scenes has been a popular research topic in both computer vision and natural language processing communities. Recently, fine-grained image–text matching has shown its significant advance in inferring the high-level semantic correspondence by aggregating pairwise region–word similarity, but it remains challenging mainly due to insufficient representation of high-order semantic concepts and their explicit connections in one modality as its matched in another modality. To tackle this issue, we propose a relationship-enhanced semantic graph (ReSG) model, which can improve the image–text representations by learning their locally discriminative semantic concepts and then organizing their relationships in a contextual order. To be specific, two tailored graph encoders, visual relationship-enhanced graph (VReG) and textual relationship-enhanced graph (TReG), are respectively exploited to encode the high-level semantic concepts of corresponding instances and their semantic relationships. Meanwhile, the representations of each graph node are optimized by aggregating semantically contextual information to enhance the node-level semantic correspondence. Further, the hard-negative triplet ranking loss, center hinge loss, and positive–negative margin loss are jointly leveraged to learn the fine-grained correspondence between the ReSG representations of image and text, whereby the discriminative cross-modal embeddings can be explicitly obtained to benefit various image–text matching tasks in a more interpretable way. Extensive experiments verify the advantages of the proposed fine-grained graph matching approach, by achieving the state-of-the-art image–text matching results on public benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
乐乐应助Zz采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
田様应助科研通管家采纳,获得10
刚刚
刚刚
嗯嗯嗯嗯完成签到,获得积分10
刚刚
2秒前
shirelylee发布了新的文献求助10
2秒前
2秒前
hay发布了新的文献求助10
2秒前
重要代丝发布了新的文献求助40
4秒前
汉堡包应助fengzhong采纳,获得10
6秒前
7秒前
赘婿应助tutu采纳,获得10
7秒前
平常的豆芽完成签到,获得积分10
7秒前
8秒前
9秒前
健忘的金完成签到 ,获得积分10
9秒前
9秒前
10秒前
隐形曼青应助Qyyy采纳,获得10
11秒前
11秒前
听曲散步完成签到,获得积分10
12秒前
吹雪的菠萝完成签到,获得积分10
12秒前
SY发布了新的文献求助10
13秒前
13秒前
善良迎荷发布了新的文献求助10
13秒前
糖豆子发布了新的文献求助10
13秒前
BSDL发布了新的文献求助10
13秒前
leecarp发布了新的文献求助10
14秒前
杳鸢应助未来的闫院士采纳,获得80
14秒前
14秒前
毛豆应助未来的闫院士采纳,获得10
14秒前
M.完成签到 ,获得积分10
15秒前
Gracezzz完成签到 ,获得积分10
15秒前
strive发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458644
求助须知:如何正确求助?哪些是违规求助? 3053442
关于积分的说明 9036584
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504484
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694494