Identification of Green Gram (Vigna radiata) Grains Infested by Callosobruchus maculatus Through X-ray Imaging and GAN-Based Image Augmentation

侵染 人工智能 辐射 计算机科学 模式识别(心理学) 维格纳 生物 园艺
作者
L. G. Divyanth,V. Chelladurai,M. Loganathan,Digvir S. Jayas,P. Soni
出处
期刊:Journal Of Biosystems Engineering [Springer Science+Business Media]
卷期号:47 (3): 302-317 被引量:10
标识
DOI:10.1007/s42853-022-00147-9
摘要

Green gram (Vigna radiata) is an important food legume of the world. However, post-harvest losses due to pulse beetle, Callosobruchus maculatus (F.), are significant due to improper storage management practices and undetected internal infestations. The detection of early stages of infestation could help in implementing suitable control practices for insect disinfestation. This study determined the potential of detecting internal infestations caused by C. maculatus using the soft X-ray method and deep learning. Furthermore, this study aims to reduce the time and effort needed to prepare a huge amount of image data for this highly data-driven process by using generative adversarial networks (GANs). A three-class classification method was implemented to identify the infestation stages, namely, uninfested kernel, larva stage, and pupa stage. The approach was based on features extraction from the deepest pooling layer of a state-of-the-art Convolutional Neural Network architecture—the Xception, and using support vector machine as the classifier. Moreover, a GAN model was proposed to synthesize artificial X-ray images. The overall F1-score produced by the model was improved from 0.86 to 0.91 when the GAN-synthesized dataset additionally supported the training data. Also, the classification accuracy for detecting the stage of internal infestation improved by 5.5%. The experiment showed that X-ray imaging and deep learning–based automatic features extraction could identify internal infestation in green gram grains. The results determine that augmentation using GANs can enhance the status of learning-based grain quality assessment models with reduced manual effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
月儿发布了新的文献求助10
刚刚
MJJ发布了新的文献求助10
刚刚
小茗同学完成签到,获得积分20
刚刚
不能吃太饱完成签到,获得积分10
1秒前
1秒前
yin完成签到,获得积分10
1秒前
Peyton Why完成签到,获得积分10
1秒前
852应助研友_ZAyQeZ采纳,获得10
2秒前
2秒前
打打应助典雅雁梅采纳,获得10
2秒前
大大粒完成签到,获得积分10
3秒前
3秒前
id完成签到,获得积分10
3秒前
bkagyin应助MrIShelter采纳,获得10
3秒前
tong完成签到,获得积分10
3秒前
冤申发布了新的文献求助10
3秒前
梧桐应助典雅的俊驰采纳,获得10
3秒前
3秒前
3秒前
魔幻小蚂蚁完成签到,获得积分10
4秒前
英俊的铭应助WWWWWMMMMMFFFFF采纳,获得10
4秒前
研友_8DAv0L完成签到,获得积分10
4秒前
rainbow5432完成签到 ,获得积分10
4秒前
4秒前
兴奋寄容完成签到,获得积分10
4秒前
雪梨发布了新的文献求助10
4秒前
何辞为完成签到,获得积分10
4秒前
渣义发布了新的文献求助10
5秒前
5秒前
he完成签到,获得积分10
5秒前
5秒前
毛毛虫发布了新的文献求助10
6秒前
Akim应助大魔王采纳,获得10
7秒前
海东来应助yuqinw采纳,获得30
7秒前
动听的听兰完成签到,获得积分10
7秒前
Jasper应助MJJ采纳,获得10
8秒前
tonydymt完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助aa采纳,获得10
9秒前
Sherry完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406