Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms

高光谱成像 模式识别(心理学) 计算机科学 卷积神经网络 人工智能 特征选择 主成分分析 传感器融合 多光谱图像 融合 数据集 变量(数学) 算法 数学 哲学 数学分析 语言学
作者
Jie Hao,Fujia Dong,Yalei Li,Songlei Wang,Jiarui Cui,Zhifeng Zhang,Kangning Wu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:125: 104286-104286 被引量:40
标识
DOI:10.1016/j.infrared.2022.104286
摘要

Deep convolutional neural networks have been applied to hyperspectral imaging (HSI) and have significantly improved modelling performance in many spectral analysis tasks due to their automatic extraction of relevant features. Using visible and near infrared hyperspectral (Vis-NIR) data, two-dimensional convolutional neural network (2D-CNN) discrimination models between the spectra of wolfberries and their corresponding classes of geographical origins were established and optimized using various variable selection and data fusion methods. The interval variable iterative space shrinking analysis (iVISSA), the uninformative variable elimination (UVE) algorithm, competitive adaptive reweighted sampling (CARS) and the iterative retained information variable (IRIV) algorithms were used to extract the feature wavelengths and compare the modelling effects; and then the 72 optimal wavelengths were extracted by the iVISSA algorithm. To extract the textural features of images, grey-level co-occurrence matrix (GLCM) analysis was conducted on the first principal component image. Models using variable selection methods based on low-level fusion data were superior to the corresponding methods based on single spectral data. The model based on iVISSA achieved the best result on mid-level fusion, the prediction set accuracy and mean F1 were 97.34% and 100%, respectively. Finally, optimized models of spectral-textural data were employed to identify the geographical origins of wolfberries. In general, the results showed that 2D-CNN model combined with fusion data of spectral and textural information can obtain excellent identification effect for the near geographical origins of wolfberries. This study may help develop an online detection system of near geographical origins of wolfberries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjw发布了新的文献求助30
刚刚
可爱的函函应助毛毛哦啊采纳,获得10
刚刚
blush发布了新的文献求助20
刚刚
刚刚
kk发布了新的文献求助10
1秒前
6666完成签到,获得积分20
1秒前
科研CY发布了新的文献求助10
2秒前
充电宝应助Albee采纳,获得10
2秒前
百里健柏完成签到,获得积分10
3秒前
隐形曼青应助贪玩岱周采纳,获得10
4秒前
4秒前
李山鬼发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI5应助笑点低的紫采纳,获得10
5秒前
6秒前
无欲无求的打工仔完成签到,获得积分10
6秒前
追逐123完成签到 ,获得积分10
7秒前
abner应助多情口红采纳,获得10
7秒前
7秒前
浮游应助青梧采纳,获得10
7秒前
任婷发布了新的文献求助10
8秒前
121314wld发布了新的文献求助10
8秒前
阳光向秋发布了新的文献求助10
8秒前
8秒前
浮游应助呵呵禾采纳,获得10
8秒前
Akim应助啦啦啦采纳,获得10
9秒前
9秒前
淡定可乐发布了新的文献求助10
9秒前
等待雅寒完成签到,获得积分10
10秒前
Calactic完成签到 ,获得积分10
10秒前
今后应助唠叨的又菡采纳,获得10
10秒前
orixero应助Yvonne采纳,获得10
11秒前
ya完成签到,获得积分10
11秒前
11秒前
梅竹发布了新的文献求助10
11秒前
000发布了新的文献求助10
12秒前
李爱国应助西蓝花战士采纳,获得10
12秒前
527完成签到,获得积分10
12秒前
liang发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970