Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms

高光谱成像 模式识别(心理学) 计算机科学 卷积神经网络 人工智能 特征选择 主成分分析 传感器融合 多光谱图像 融合 数据集 变量(数学) 算法 数学 哲学 数学分析 语言学
作者
Jie Hao,Fujia Dong,Yalei Li,Songlei Wang,Jiarui Cui,Zhifeng Zhang,Kangning Wu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:125: 104286-104286 被引量:37
标识
DOI:10.1016/j.infrared.2022.104286
摘要

Deep convolutional neural networks have been applied to hyperspectral imaging (HSI) and have significantly improved modelling performance in many spectral analysis tasks due to their automatic extraction of relevant features. Using visible and near infrared hyperspectral (Vis-NIR) data, two-dimensional convolutional neural network (2D-CNN) discrimination models between the spectra of wolfberries and their corresponding classes of geographical origins were established and optimized using various variable selection and data fusion methods. The interval variable iterative space shrinking analysis (iVISSA), the uninformative variable elimination (UVE) algorithm, competitive adaptive reweighted sampling (CARS) and the iterative retained information variable (IRIV) algorithms were used to extract the feature wavelengths and compare the modelling effects; and then the 72 optimal wavelengths were extracted by the iVISSA algorithm. To extract the textural features of images, grey-level co-occurrence matrix (GLCM) analysis was conducted on the first principal component image. Models using variable selection methods based on low-level fusion data were superior to the corresponding methods based on single spectral data. The model based on iVISSA achieved the best result on mid-level fusion, the prediction set accuracy and mean F1 were 97.34% and 100%, respectively. Finally, optimized models of spectral-textural data were employed to identify the geographical origins of wolfberries. In general, the results showed that 2D-CNN model combined with fusion data of spectral and textural information can obtain excellent identification effect for the near geographical origins of wolfberries. This study may help develop an online detection system of near geographical origins of wolfberries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
re6irth完成签到,获得积分10
1秒前
wanci发布了新的文献求助10
2秒前
eee完成签到,获得积分10
2秒前
木今发布了新的文献求助10
2秒前
手残症完成签到,获得积分10
2秒前
2秒前
七星嘿咻完成签到,获得积分10
2秒前
独摇之完成签到,获得积分10
3秒前
3秒前
正直白梅发布了新的文献求助10
3秒前
3秒前
qwepirt完成签到,获得积分10
4秒前
4秒前
Dou完成签到,获得积分10
4秒前
852应助哎呦喂喂采纳,获得30
5秒前
灰太狼养的小灰灰完成签到,获得积分10
5秒前
VISIN完成签到,获得积分10
5秒前
5秒前
慢慢发布了新的文献求助10
5秒前
6秒前
李爱国应助搞怪的一江采纳,获得10
6秒前
7秒前
周雨婷发布了新的文献求助10
7秒前
7秒前
zlk112zr完成签到,获得积分10
8秒前
阿姜姜姜姜应助半生半熟采纳,获得20
8秒前
隐形曼青应助hrzmlily采纳,获得10
8秒前
优美熠悦完成签到,获得积分10
9秒前
10秒前
SYLH应助尼古丁的味道采纳,获得50
10秒前
溏心发布了新的文献求助10
10秒前
木今完成签到,获得积分10
11秒前
iNk应助yu采纳,获得20
11秒前
11秒前
脑洞疼应助阿星采纳,获得10
11秒前
无语的寒天完成签到 ,获得积分10
11秒前
YAMO一发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572