Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms

高光谱成像 模式识别(心理学) 计算机科学 卷积神经网络 人工智能 特征选择 主成分分析 传感器融合 多光谱图像 融合 数据集 变量(数学) 算法 数学 哲学 数学分析 语言学
作者
Jie Hao,Fujia Dong,Yalei Li,Songlei Wang,Jiarui Cui,Zhifeng Zhang,Kangning Wu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:125: 104286-104286 被引量:42
标识
DOI:10.1016/j.infrared.2022.104286
摘要

Deep convolutional neural networks have been applied to hyperspectral imaging (HSI) and have significantly improved modelling performance in many spectral analysis tasks due to their automatic extraction of relevant features. Using visible and near infrared hyperspectral (Vis-NIR) data, two-dimensional convolutional neural network (2D-CNN) discrimination models between the spectra of wolfberries and their corresponding classes of geographical origins were established and optimized using various variable selection and data fusion methods. The interval variable iterative space shrinking analysis (iVISSA), the uninformative variable elimination (UVE) algorithm, competitive adaptive reweighted sampling (CARS) and the iterative retained information variable (IRIV) algorithms were used to extract the feature wavelengths and compare the modelling effects; and then the 72 optimal wavelengths were extracted by the iVISSA algorithm. To extract the textural features of images, grey-level co-occurrence matrix (GLCM) analysis was conducted on the first principal component image. Models using variable selection methods based on low-level fusion data were superior to the corresponding methods based on single spectral data. The model based on iVISSA achieved the best result on mid-level fusion, the prediction set accuracy and mean F1 were 97.34% and 100%, respectively. Finally, optimized models of spectral-textural data were employed to identify the geographical origins of wolfberries. In general, the results showed that 2D-CNN model combined with fusion data of spectral and textural information can obtain excellent identification effect for the near geographical origins of wolfberries. This study may help develop an online detection system of near geographical origins of wolfberries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的蜜粉完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
abb完成签到,获得积分10
2秒前
lzz发布了新的文献求助10
3秒前
3秒前
3秒前
张大诚发布了新的文献求助10
4秒前
5秒前
CCX发布了新的文献求助10
7秒前
超级天川完成签到,获得积分10
8秒前
DUWEI发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
w白发布了新的文献求助10
10秒前
12秒前
张大帅6666完成签到,获得积分10
12秒前
张大诚完成签到,获得积分10
12秒前
牛市棋手完成签到,获得积分10
13秒前
解语花发布了新的文献求助10
14秒前
sweetsbt发布了新的文献求助10
14秒前
英姑应助森鹿采纳,获得30
14秒前
xz完成签到 ,获得积分10
14秒前
小马甲应助Chester采纳,获得10
15秒前
芭蕾恰恰舞完成签到,获得积分10
15秒前
汉天完成签到,获得积分10
15秒前
七月发布了新的文献求助10
16秒前
蜜桃小丸子完成签到 ,获得积分10
16秒前
wuming完成签到,获得积分10
16秒前
...完成签到,获得积分10
16秒前
19秒前
19秒前
dxxcshin完成签到,获得积分10
19秒前
21秒前
深情映萱关注了科研通微信公众号
21秒前
完美世界应助司佳雨采纳,获得10
22秒前
科研通AI6应助颜朗采纳,获得10
23秒前
科研通AI6应助七月采纳,获得10
23秒前
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830