亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms

高光谱成像 模式识别(心理学) 计算机科学 卷积神经网络 人工智能 特征选择 主成分分析 传感器融合 多光谱图像 融合 数据集 变量(数学) 算法 数学 哲学 数学分析 语言学
作者
Jie Hao,Fujia Dong,Yalei Li,Songlei Wang,Jiarui Cui,Zhang Zhi-feng,Kangning Wu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:125: 104286-104286 被引量:23
标识
DOI:10.1016/j.infrared.2022.104286
摘要

Deep convolutional neural networks have been applied to hyperspectral imaging (HSI) and have significantly improved modelling performance in many spectral analysis tasks due to their automatic extraction of relevant features. Using visible and near infrared hyperspectral (Vis-NIR) data, two-dimensional convolutional neural network (2D-CNN) discrimination models between the spectra of wolfberries and their corresponding classes of geographical origins were established and optimized using various variable selection and data fusion methods. The interval variable iterative space shrinking analysis (iVISSA), the uninformative variable elimination (UVE) algorithm, competitive adaptive reweighted sampling (CARS) and the iterative retained information variable (IRIV) algorithms were used to extract the feature wavelengths and compare the modelling effects; and then the 72 optimal wavelengths were extracted by the iVISSA algorithm. To extract the textural features of images, grey-level co-occurrence matrix (GLCM) analysis was conducted on the first principal component image. Models using variable selection methods based on low-level fusion data were superior to the corresponding methods based on single spectral data. The model based on iVISSA achieved the best result on mid-level fusion, the prediction set accuracy and mean F1 were 97.34% and 100%, respectively. Finally, optimized models of spectral-textural data were employed to identify the geographical origins of wolfberries. In general, the results showed that 2D-CNN model combined with fusion data of spectral and textural information can obtain excellent identification effect for the near geographical origins of wolfberries. This study may help develop an online detection system of near geographical origins of wolfberries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
小龙完成签到,获得积分10
8秒前
CodeCraft应助阿文采纳,获得10
8秒前
情怀应助DrW1111采纳,获得10
11秒前
atdawn1998发布了新的文献求助20
13秒前
子蓼完成签到 ,获得积分10
14秒前
13134发布了新的文献求助10
19秒前
火星完成签到 ,获得积分10
33秒前
柔弱藏今完成签到,获得积分20
39秒前
jiabu完成签到 ,获得积分10
40秒前
45秒前
46秒前
ASHSR完成签到 ,获得积分10
50秒前
天妒嘤才发布了新的文献求助10
51秒前
romme发布了新的文献求助50
51秒前
听说你还在搞什么原创完成签到,获得积分10
57秒前
在水一方应助科研通管家采纳,获得10
59秒前
爆米花应助天妒嘤才采纳,获得10
59秒前
1分钟前
真的不会完成签到,获得积分10
1分钟前
1分钟前
阿文完成签到,获得积分10
1分钟前
无情的友容完成签到 ,获得积分10
1分钟前
彪壮的青亦完成签到,获得积分10
1分钟前
阿文发布了新的文献求助10
1分钟前
1分钟前
深空完成签到 ,获得积分10
1分钟前
LL发布了新的文献求助10
1分钟前
LL完成签到,获得积分10
1分钟前
1分钟前
deeferf完成签到 ,获得积分10
1分钟前
1分钟前
务实的焦完成签到 ,获得积分10
1分钟前
1107任务报告完成签到 ,获得积分10
1分钟前
yyc666发布了新的文献求助10
1分钟前
FashionBoy应助yyc666采纳,获得10
2分钟前
领导范儿应助阿文采纳,获得10
2分钟前
冷酷丹翠完成签到 ,获得积分10
2分钟前
2分钟前
华仔应助22222采纳,获得10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139509
求助须知:如何正确求助?哪些是违规求助? 2790383
关于积分的说明 7795098
捐赠科研通 2446823
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146