Quality Assurance based on Deep Learning for Pelvic OARs Delineation in Radiotherapy

轮廓 百分位 质量保证 豪斯多夫距离 人工智能 分割 医学 灵敏度(控制系统) 核医学 计算机科学 统计 数学 外部质量评估 计算机图形学(图像) 病理 电子工程 工程类
作者
Hang Yu,Yi-Song He,Yuchuan Fu,Xia Li,Jun Zhang,Huan Liu
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:19 (4) 被引量:2
标识
DOI:10.2174/1573405618666220621121225
摘要

Correct delineation of organs at risk (OARs) is an important step for radiotherapy and it is also a time-consuming process that depends on many factors.An automatic quality assurance (QA) method based on deep learning (DL) was proposed to improve efficiency for detecting contouring errors of OARs.A total of 180 planning CT scan sets at the pelvic site and the corresponding OARs contours from clinics were enrolled in this study. Among them, 140 cases were randomly chosen as the training datasets, 20 cases were used as the validation datasets, and the remaining 20 cases were used as the test datasets. DL-based models were trained through data curation for data cleaning based on the Dice similarity coefficient and the 95th percentile Hausdorff distance between the original contours and the predicted contours. All contouring errors could be classified into two types; minor modification required and major modification required. The pass criteria were established using Bias- Corrected and Accelerated bootstrap on 20 manually reviewed validation datasets. The performance of the QA method was evaluated with the metrics of sensitivity, specificity, the area under the receiving operator characteristic curve (AUC), and detection rate sensitivity on the 20 test datasets.For all OARs, segmentation results after data curation were superior to those without. The sensitivity of the QA method was greater than 0.890 and the specificity was higher than 0.975. The AUCs were 0.948, 0.966, 0.965, and 0.932 for the bladder, right femoral head, left femoral head, and rectum, respectively. Almost all major errors could be detected by the automatic QA method, and the lowest detection rate sensitivity of minor errors was 0.863 for the rectum.QA of OARs is an important step for the correct implementation of radiotherapy. The DL-based QA method proposed in this study showed a high potential to automatically detect contouring errors with high precision. The method can be integrated into the existing radiotherapy procedures to improve the efficiency of delineating the OARs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文静静静完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
啥时候能退休完成签到,获得积分10
2秒前
178181发布了新的文献求助20
2秒前
ff不吃芹菜完成签到,获得积分10
3秒前
3秒前
ztq417发布了新的文献求助10
3秒前
斯文的冬日完成签到,获得积分20
3秒前
隐形曼青应助、、、采纳,获得10
3秒前
乐观的妙芹完成签到,获得积分20
4秒前
西梅完成签到,获得积分10
4秒前
4秒前
4秒前
大模型应助taotie采纳,获得10
5秒前
5秒前
无花果应助sisibiqi采纳,获得10
5秒前
无忧sxt发布了新的文献求助10
6秒前
6秒前
6秒前
万坤发布了新的文献求助10
7秒前
7秒前
SYLH应助封小封采纳,获得10
7秒前
Duxize发布了新的文献求助10
8秒前
夏日发布了新的文献求助10
8秒前
充电宝应助fukesi采纳,获得10
8秒前
8秒前
Lzyi发布了新的文献求助10
8秒前
8秒前
9秒前
天晴肖发布了新的文献求助10
10秒前
JamesPei应助Jing采纳,获得10
11秒前
11秒前
11秒前
11秒前
wwwwwwwwww发布了新的文献求助10
11秒前
12秒前
xxy发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099