已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quality Assurance based on Deep Learning for Pelvic OARs Delineation in Radiotherapy

轮廓 百分位 质量保证 豪斯多夫距离 人工智能 分割 医学 灵敏度(控制系统) 核医学 计算机科学 统计 数学 外部质量评估 计算机图形学(图像) 病理 电子工程 工程类
作者
Hang Yu,Yi-Song He,Yuchuan Fu,Xia Li,Jun Zhang,Huan Liu
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:19 (4) 被引量:2
标识
DOI:10.2174/1573405618666220621121225
摘要

Correct delineation of organs at risk (OARs) is an important step for radiotherapy and it is also a time-consuming process that depends on many factors.An automatic quality assurance (QA) method based on deep learning (DL) was proposed to improve efficiency for detecting contouring errors of OARs.A total of 180 planning CT scan sets at the pelvic site and the corresponding OARs contours from clinics were enrolled in this study. Among them, 140 cases were randomly chosen as the training datasets, 20 cases were used as the validation datasets, and the remaining 20 cases were used as the test datasets. DL-based models were trained through data curation for data cleaning based on the Dice similarity coefficient and the 95th percentile Hausdorff distance between the original contours and the predicted contours. All contouring errors could be classified into two types; minor modification required and major modification required. The pass criteria were established using Bias- Corrected and Accelerated bootstrap on 20 manually reviewed validation datasets. The performance of the QA method was evaluated with the metrics of sensitivity, specificity, the area under the receiving operator characteristic curve (AUC), and detection rate sensitivity on the 20 test datasets.For all OARs, segmentation results after data curation were superior to those without. The sensitivity of the QA method was greater than 0.890 and the specificity was higher than 0.975. The AUCs were 0.948, 0.966, 0.965, and 0.932 for the bladder, right femoral head, left femoral head, and rectum, respectively. Almost all major errors could be detected by the automatic QA method, and the lowest detection rate sensitivity of minor errors was 0.863 for the rectum.QA of OARs is an important step for the correct implementation of radiotherapy. The DL-based QA method proposed in this study showed a high potential to automatically detect contouring errors with high precision. The method can be integrated into the existing radiotherapy procedures to improve the efficiency of delineating the OARs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyi发布了新的文献求助10
1秒前
1秒前
3秒前
熙原发布了新的文献求助20
4秒前
喵了个咪发布了新的文献求助10
10秒前
10秒前
无花果应助parpate采纳,获得10
11秒前
12秒前
英姑应助yulx001采纳,获得10
12秒前
momo完成签到 ,获得积分10
14秒前
16秒前
16秒前
17秒前
18秒前
余生完成签到,获得积分10
19秒前
木木发布了新的文献求助10
19秒前
顾矜应助朴素的SCI缔造者采纳,获得10
19秒前
liyi完成签到,获得积分10
20秒前
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
酷酷以柳发布了新的文献求助10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
Xiang应助科研通管家采纳,获得10
21秒前
jklh发布了新的文献求助10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
星辰大海应助团子采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
Hayat应助科研通管家采纳,获得30
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
22秒前
Hilda007应助yaoyh_gc采纳,获得10
22秒前
parpate发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052152
求助须知:如何正确求助?哪些是违规求助? 4279258
关于积分的说明 13339106
捐赠科研通 4094654
什么是DOI,文献DOI怎么找? 2241226
邀请新用户注册赠送积分活动 1247560
关于科研通互助平台的介绍 1176665