Vibration trend measurement of hydropower generating unit based on KELM optimized with HSMAHHO algorithm and error correction

希尔伯特-黄变换 计算机科学 振动 水力发电 模式(计算机接口) 算法 噪音(视频) 理论(学习稳定性) 人工智能 白噪声 工程类 机器学习 声学 操作系统 图像(数学) 电气工程 物理 电信
作者
Wenlong Fu,Feng Zou,Baojia Chen,Wei Jiang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (16): 9367-9383 被引量:1
标识
DOI:10.1177/09544062221092923
摘要

As the core equipment of hydropower plants, the healthy condition of hydropower generating unit (HGU) plays a vital role in the safe and stable operation of hydropower plants. Therefore, it is of great significance to measure the vibration trend of HGU, which can effectively reflect the health condition of HGU, allowing the development of appropriate countermeasures to improve the safety and stability operation of HGU. Given this, a hybrid approach for measuring vibration signals of HGU coupled with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), phase space reconstruction (PSR), kernel extreme learning machine (KELM) optimized by hybrid slime mold algorithm and Harris hawks optimization (HSMAHHO), and error correction with gate recurrent unit (GRU) network is proposed in this paper. Specifically, CEEMDAN is initially applied to decompose the raw vibration signals into several intrinsic mode functions (IMFs). Subsequently, PSR is adopted to convert each IMF into the input–output matrix of KELM for prediction. Meanwhile, HSMAHHO algorithm is utilized to optimize the critical parameters within KELM. Afterward, the predicted values of each IMF are superposed to obtain the predicted values of the raw vibration signals, and the error sequence to be corrected is constructed. Eventually, the error sequence is predicted by combining CEEMDAN, PSR, GRU and then summed up with the previous predicted values to get the final measuring result. In addition, the feasibility of the proposed hybrid approach is further verified by the experimental comparative analysis with seven comparative models. The experimental results demonstrate that (1) the proposed HSMAHHO algorithm could better optimize the internal parameters of KELM, which effectively improves the measuring results (2) the proposed error correction strategy could effectively enhance the measuring accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨完成签到 ,获得积分10
刚刚
1秒前
lfl完成签到,获得积分10
1秒前
3秒前
weiziho发布了新的文献求助10
3秒前
YOLO完成签到,获得积分10
3秒前
庄子完成签到,获得积分10
3秒前
品如的文献应助巫马尔槐采纳,获得10
4秒前
研友_VZG7GZ应助hahahahaha采纳,获得10
4秒前
向阳而生发布了新的文献求助10
4秒前
4秒前
大个应助lolo采纳,获得10
5秒前
希望天下0贩的0应助srui采纳,获得10
5秒前
星辰大海应助活泼平凡采纳,获得10
5秒前
5秒前
科研小白发布了新的文献求助10
6秒前
hhh发布了新的文献求助10
6秒前
Jasper应助称心采纳,获得10
6秒前
搜集达人应助dm11采纳,获得10
7秒前
8秒前
qianqiu发布了新的文献求助10
8秒前
cc发布了新的文献求助10
8秒前
HH完成签到 ,获得积分10
8秒前
舒心的钢笔完成签到 ,获得积分10
9秒前
NexusExplorer应助赫灵竹采纳,获得10
9秒前
9秒前
Orange应助向阳而生采纳,获得10
11秒前
文静三颜发布了新的文献求助10
11秒前
ZengJuan发布了新的文献求助10
11秒前
完美的海完成签到 ,获得积分0
11秒前
12秒前
李健应助hhh采纳,获得10
12秒前
YOLO发布了新的文献求助10
14秒前
14秒前
14秒前
滴滴滴发布了新的文献求助10
14秒前
奥利哩哩发布了新的文献求助10
15秒前
hahahahaha发布了新的文献求助10
16秒前
liu完成签到,获得积分10
17秒前
懵懂的小夏完成签到,获得积分10
17秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330040
求助须知:如何正确求助?哪些是违规求助? 2959654
关于积分的说明 8596227
捐赠科研通 2638022
什么是DOI,文献DOI怎么找? 1444115
科研通“疑难数据库(出版商)”最低求助积分说明 668935
邀请新用户注册赠送积分活动 656517