Identification of Potential Predictor of Biochemical Recurrence in Prostate Cancer

前列腺癌 生化复发 前列腺切除术 医学 肿瘤科 癌症 比例危险模型 内科学 前列腺 队列
作者
Jingchao Wei,Xiaohang Wu,Yuxiang Li,Xiaowu Tao,Bo Wang,Guangming Yin
出处
期刊:International Journal of General Medicine [Dove Medical Press]
卷期号:Volume 15: 4897-4905 被引量:5
标识
DOI:10.2147/ijgm.s355435
摘要

Background: Prostate cancer is a common malignancy in men. Radical prostatectomy is one of the primary treatment modalities for patients with prostate cancer. However, early identification of biochemical recurrence is a major challenge for post-radical prostatectomy surveillance. There is a lack of reliable predictors of biochemical recurrence. The purpose of this study was to explore potential biochemical recurrence indicators for prostate cancer. Materials and Methods: We analyzed transcriptomic data of cases with biochemical recurrence in The Cancer Genome Atlas (TCGA). Then, we performed integrative bioinformatics analyses to establish a biochemical recurrence predictor model of prostate cancer. Results: There were 146 differentially expressed genes (DEGs) between prostate cancer and normal prostate, including 12 upregulated and 134 downregulated genes. Comprehensive pathway enrichment analyses revealed that these DEGs were associated with multiple cellular metabolic pathways. Subsequently, according to the random assignment principle, 208 patients were assigned to the training cohort and 205 patients to the validation cohort. Univariate Cox regression analysis showed that 7 genes were significantly associated with the biochemical recurrence of prostate cancer. A model consisting of 5 genes was constructed using LASSO regression and multivariate Cox regression to predict biochemical recurrence of prostate cancer. Expression of PAH and AOC1 decreased with an increasing incidence of prostate cancer, whereas expression of DDC, LINC01436 and ORM1 increased with increasing incidence of prostate cancer. Kaplan–Meier curves and receiver operator characteristic (ROC) curves indicated that the 5-gene model had reliable utility in identifying the risk of biochemical recurrence of prostate cancer. Conclusion: This study provides a model for predicting prostate cancer recurrence after surgery, which may be an optional indicator for postoperative follow-up. Keywords: prostate cancer, biochemical recurrence, predictor, signature, follow-up
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助chchjust采纳,获得10
刚刚
寒冷沛柔完成签到 ,获得积分10
刚刚
香蕉觅云应助王水良采纳,获得30
1秒前
1秒前
1秒前
meiqiu完成签到,获得积分10
2秒前
昏睡的一一完成签到,获得积分10
2秒前
陈一一完成签到 ,获得积分10
2秒前
3秒前
cc发布了新的文献求助10
3秒前
3秒前
清脆的丹南完成签到,获得积分20
4秒前
better完成签到,获得积分10
5秒前
5秒前
友好梦岚完成签到,获得积分20
6秒前
exquisite完成签到,获得积分10
6秒前
阿曼尼完成签到 ,获得积分10
6秒前
6秒前
啵啵虎发布了新的文献求助10
7秒前
明明ming999_完成签到,获得积分10
7秒前
Sealight完成签到,获得积分10
7秒前
star完成签到,获得积分10
7秒前
7秒前
烯灯完成签到,获得积分10
8秒前
8秒前
hai发布了新的文献求助30
9秒前
水电费完成签到 ,获得积分10
9秒前
翊然甜周发布了新的文献求助20
9秒前
ANNI发布了新的文献求助10
9秒前
MY关闭了MY文献求助
10秒前
凳子琪完成签到,获得积分10
11秒前
二师兄发布了新的文献求助10
11秒前
11秒前
sue402完成签到,获得积分10
11秒前
彭于晏应助壮观的白枫采纳,获得10
12秒前
翔哥完成签到,获得积分10
12秒前
cc完成签到,获得积分10
12秒前
XZZH完成签到,获得积分10
12秒前
丘比特应助葛怀锐采纳,获得30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423