A Novel Key Features Screening Method Based on Extreme Learning Machine for Alzheimer’s Disease Study

极限学习机 钥匙(锁) 人工智能 计算机科学 模式识别(心理学) 机器学习 人工神经网络 计算机安全
作者
Jia Lu,Weiming Zeng,Lu Zhang,Yuhu Shi
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fnagi.2022.888575
摘要

The Extreme Learning Machine (ELM) is a simple and efficient Single Hidden Layer Feedforward Neural Network(SLFN) algorithm. In recent years, it has been gradually used in the study of Alzheimer’s disease (AD). When using ELM to diagnose AD based on high-dimensional features, there are often some features that have no positive impact on the diagnosis, while others have a significant impact on the diagnosis. In this paper, a novel Key Features Screening Method based on Extreme Learning Machine (KFS-ELM) is proposed. It can screen for key features that are relevant to the classification (diagnosis). It can also assign weights to key features based on their importance. We designed an experiment to screen for key features of AD. A total of 920 key functional connections screened from 4005 functional connections. Their weights were also obtained. The results of the experiment showed that: (1) Using all (4,005) features to diagnose AD, the accuracy is 95.33%. Using 920 key features to diagnose AD, the accuracy is 99.20%. The 3,085 (4,005 - 920) features that were screened out had a negative effect on the diagnosis of AD. This indicates the KFS-ELM is effective in screening key features. (2) The higher the weight of the key features and the smaller their number, the greater their impact on AD diagnosis. This indicates that the KFS-ELM is rational in assigning weights to the key features for their importance. Therefore, KFS-ELM can be used as a tool for studying features and also for improving classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJJJJJJJJJJ发布了新的文献求助10
2秒前
靓丽的战斗机完成签到,获得积分10
2秒前
王王完成签到,获得积分10
2秒前
yeye完成签到,获得积分10
3秒前
qiong完成签到,获得积分10
3秒前
帅气犀牛发布了新的文献求助10
5秒前
干乌完成签到,获得积分10
5秒前
anne完成签到 ,获得积分10
5秒前
小蘑菇应助森源采纳,获得10
5秒前
深情安青应助lili采纳,获得10
6秒前
6秒前
共享精神应助LINGO采纳,获得10
6秒前
7秒前
香蕉觅云应助许安采纳,获得10
7秒前
积极听蓉完成签到,获得积分10
9秒前
Aoch完成签到,获得积分10
10秒前
zxy发布了新的文献求助10
10秒前
跳跃雯发布了新的文献求助10
10秒前
彪壮的拓芙完成签到,获得积分10
10秒前
bkagyin应助平常的白猫采纳,获得10
11秒前
爆米花应助三泥采纳,获得10
12秒前
13秒前
ZXW完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
16秒前
慕容铭发布了新的文献求助10
16秒前
16秒前
CipherSage应助三笠采纳,获得10
16秒前
jane发布了新的文献求助10
17秒前
欣欣发布了新的文献求助10
17秒前
田超完成签到,获得积分10
17秒前
Maggie发布了新的文献求助10
17秒前
科研通AI2S应助刘云采纳,获得10
18秒前
18秒前
19秒前
yy44完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945353
关于积分的说明 8524838
捐赠科研通 2621121
什么是DOI,文献DOI怎么找? 1433353
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650388