A Novel Key Features Screening Method Based on Extreme Learning Machine for Alzheimer’s Disease Study

极限学习机 钥匙(锁) 人工智能 计算机科学 模式识别(心理学) 机器学习 人工神经网络 计算机安全
作者
Jia Lu,Weiming Zeng,Lu Zhang,Yuhu Shi
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media]
卷期号:14 被引量:1
标识
DOI:10.3389/fnagi.2022.888575
摘要

The Extreme Learning Machine (ELM) is a simple and efficient Single Hidden Layer Feedforward Neural Network(SLFN) algorithm. In recent years, it has been gradually used in the study of Alzheimer’s disease (AD). When using ELM to diagnose AD based on high-dimensional features, there are often some features that have no positive impact on the diagnosis, while others have a significant impact on the diagnosis. In this paper, a novel Key Features Screening Method based on Extreme Learning Machine (KFS-ELM) is proposed. It can screen for key features that are relevant to the classification (diagnosis). It can also assign weights to key features based on their importance. We designed an experiment to screen for key features of AD. A total of 920 key functional connections screened from 4005 functional connections. Their weights were also obtained. The results of the experiment showed that: (1) Using all (4,005) features to diagnose AD, the accuracy is 95.33%. Using 920 key features to diagnose AD, the accuracy is 99.20%. The 3,085 (4,005 - 920) features that were screened out had a negative effect on the diagnosis of AD. This indicates the KFS-ELM is effective in screening key features. (2) The higher the weight of the key features and the smaller their number, the greater their impact on AD diagnosis. This indicates that the KFS-ELM is rational in assigning weights to the key features for their importance. Therefore, KFS-ELM can be used as a tool for studying features and also for improving classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叼面包的数学狗完成签到 ,获得积分10
3秒前
3秒前
4秒前
橙子大王发布了新的文献求助10
4秒前
YY完成签到,获得积分10
4秒前
阿成发布了新的文献求助10
4秒前
4秒前
阿莲呐发布了新的文献求助20
4秒前
6秒前
JamesPei应助XXXX采纳,获得10
7秒前
8秒前
8秒前
坦率班完成签到 ,获得积分10
9秒前
星河发布了新的文献求助20
9秒前
七七完成签到,获得积分10
10秒前
11秒前
SLY完成签到 ,获得积分10
12秒前
12秒前
所所应助跳跳虎采纳,获得10
12秒前
wanci应助seedcode采纳,获得10
13秒前
我是老大应助完犊子采纳,获得10
13秒前
Kevin发布了新的文献求助30
13秒前
14秒前
15秒前
灰灰灰完成签到,获得积分10
17秒前
牛牛眉目发布了新的文献求助10
17秒前
19秒前
哈哈哈完成签到,获得积分10
19秒前
七七发布了新的文献求助10
21秒前
23秒前
研友_nPb9e8完成签到,获得积分10
24秒前
科研通AI2S应助satan9采纳,获得10
25秒前
25秒前
badyoungboy完成签到,获得积分10
25秒前
邵晓啸发布了新的文献求助20
26秒前
星河完成签到,获得积分10
28秒前
追梦少年完成签到,获得积分10
29秒前
29秒前
tamo完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388