Multimodal single-cell/nucleus RNA-sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease.

小胶质细胞 生物 相互作用体 药物重新定位 计算生物学 疾病 免疫系统 神经科学 神经退行性变 生物信息学 基因 医学 炎症 药品 遗传学 免疫学 药理学 病理
作者
Feixiong Cheng,Jielin Xu,Pengyue Zhang,Yadi Zhou,Andrew A. Pieper,Jeffrey L. Cummings,James B. Leverenz
出处
期刊:PubMed 卷期号:17 Suppl 3: e051952-e051952 被引量:1
标识
DOI:10.1002/alz.051952
摘要

Systematic identification of molecular networks in disease relevant immune cells of the nervous system is critical for elucidating the underlying pathophysiology of Alzheimer's disease (AD). Two key immune cell types, disease-associated microglia (DAM) and disease-associated astrocytes (DAA), are biologically involved in AD pathobiology. Therefore, uncovering molecular determinants of DAM and DAA will enhance our understanding of AD biology, potentially identifying novel therapeutic targets for AD treatment.We systematically investigate molecular networks between DAM and DAA in order to uncover novel therapeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA-sequencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-enzyme associations, the human protein-protein interactome, and large-scale longitudinal patient data. We prioritize repurposed drugs for potential treatment of AD by identifying those that specifically reverse dysregulated gene expression of microglia and astrocytes. Finally, top drug candidates are selected to be validated further using the state-of-the-art pharmacoepidemiologic observations of a longitudinal patient database with 7.2 million subjects.Through this approach, we find both common and unique gene network regulators between DAM (i.e., PAK1, MAPK14, and CSF1R) and DAA (i.e., NFKB1, FOS, and JUN) that are significantly enriched by neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1). We identify shared immune pathways between DAM and DAA, including Th17 cell differentiation and chemokine signaling. Lastly, integrative metabolite-enzyme network analyses suggest that fatty acids and amino acids may trigger molecular alterations in DAM and DAA. Combining network-based prediction and retrospective case-control observations with 7.2 million subjects, we identify that usage of fluticasone (an approved glucocorticoid receptor agonist) is significantly associated with a reduced incidence of AD (hazard ratio (HR) = 0.86, 95% confidence interval (CI) 0.83-0.89, p<1.0x10-8 ). Propensity score-matching cohort studies reveal that usage of mometasone (a stronger glucocorticoid receptor agonist) is significantly associated with a decreased risk of AD (HR=0.74, 95% CI 0.68-0.81, p<1.0x10-8 ) compared to fluticasone after adjusting age, gender, and disease comorbidities.In summary, we present a network-based, multimodal methodology for single-cell/nucleus genomics-informed drug discovery in AD that has identified fluticasone and mometasone as potential treatments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
绵绵球发布了新的文献求助10
1秒前
1秒前
1秒前
大胆芯发布了新的文献求助10
1秒前
1秒前
所所应助丁蕾采纳,获得10
2秒前
2秒前
bin发布了新的文献求助10
2秒前
Aurora完成签到,获得积分10
3秒前
4秒前
汉堡包应助ye采纳,获得10
4秒前
132发布了新的文献求助10
4秒前
牛肉mianbo发布了新的文献求助10
4秒前
xxf发布了新的文献求助10
4秒前
隐形曼青应助xiaomage采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
小丸子的樱桃红完成签到,获得积分10
7秒前
邱文县发布了新的文献求助10
7秒前
Mao关闭了Mao文献求助
7秒前
小郭完成签到,获得积分10
7秒前
jzt12138发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
FranklinQaQ完成签到,获得积分10
9秒前
9秒前
三莫莫莫发布了新的文献求助20
9秒前
大模型应助荒林采纳,获得30
9秒前
尔舟行发布了新的文献求助10
9秒前
10秒前
10秒前
大营村完成签到,获得积分10
10秒前
11秒前
实验顺利完成签到 ,获得积分20
12秒前
伪话痨家发布了新的文献求助30
12秒前
balenidezhupi发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667