A novel rolling bearing fault diagnosis method based on generalized nonlinear spectral sparsity

方位(导航) 非线性系统 断层(地质) 计算机科学 算法 控制理论(社会学) 工程类 地质学 人工智能 物理 地震学 量子力学 控制(管理)
作者
Baokun Han,Zujie Yang,Zongzhen Zhang,Huaiqian Bao,Jinrui Wang,Zongling Liu,Shunming Li
出处
期刊:Measurement [Elsevier]
卷期号:198: 111131-111131 被引量:16
标识
DOI:10.1016/j.measurement.2022.111131
摘要

• A generalized nonlinear sigmoid activation function is proposed. • The improved L 3/2 norm is used instead of kurtosis as the basis for selecting the best resonance frequency band. • The coefficient of variation is used to measure the difference between impact signal and health signal. • Signal characteristics of noise interference can be extracted by using the proposed method. In the fast kurtogram (FK), kurtosis is used as an indicator to locate the fault frequency band, and is widely aplied to fault diagnosis. However, kurtosis has been proven to favor a single large impulse rather than the required small fault characteristics, especially in the strong interference environment. To eliminate the impact of large-amplitude impact and further improve the accuracy of fault extraction, a method based on generalized nonlinear spectral sparsity (GNSS) is proposed for fault diagnosis of bearings. First, Z-score normalization and generalized nonlinear sigmoid activation function are used for signal preprocessing, and the scale distribution of the signal will be changed to eliminate the effects of large amplitude shocks under noisy environment. Then, to improve the sparsity measure capability, an improved L 3 / 2 norm is used to replace kurtosis as the basis for selecting the best resonance frequency band. Finally, the effectiveness of the GNSS is verified by simulation data and experimental data. Compared with FK method, the performance of fault extraction of the proposed method is significantly improved, especially for the interference of abnormal impact.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
独特的凡蕾完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
孤独的明雪完成签到,获得积分10
5秒前
默默善愁完成签到,获得积分10
5秒前
6秒前
花花发布了新的文献求助10
7秒前
年年年年发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
一支菜馅儿馄饨完成签到,获得积分10
11秒前
垃圾智造者完成签到,获得积分10
11秒前
12秒前
酷波er应助张张采纳,获得10
13秒前
量子星尘发布了新的文献求助30
13秒前
Tang完成签到,获得积分10
14秒前
15秒前
老实幻姬发布了新的文献求助10
15秒前
15秒前
zxxxx发布了新的文献求助10
16秒前
叽里呱啦完成签到 ,获得积分10
16秒前
yyjdtc完成签到,获得积分10
17秒前
蓝华完成签到 ,获得积分10
17秒前
yrj完成签到 ,获得积分10
17秒前
聪慧咖啡豆完成签到,获得积分10
17秒前
Leticia发布了新的文献求助10
18秒前
情怀应助香蕉半邪采纳,获得10
18秒前
微风完成签到,获得积分10
19秒前
Lee发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
多吃青菜完成签到,获得积分10
20秒前
PhDLi完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717929
求助须知:如何正确求助?哪些是违规求助? 5249249
关于积分的说明 15283791
捐赠科研通 4867991
什么是DOI,文献DOI怎么找? 2614002
邀请新用户注册赠送积分活动 1563914
关于科研通互助平台的介绍 1521377