A novel rolling bearing fault diagnosis method based on generalized nonlinear spectral sparsity

方位(导航) 非线性系统 断层(地质) 计算机科学 算法 控制理论(社会学) 工程类 地质学 人工智能 物理 地震学 控制(管理) 量子力学
作者
Baokun Han,Zujie Yang,Zongzhen Zhang,Huaiqian Bao,Jinrui Wang,Zongling Liu,Shunming Li
出处
期刊:Measurement [Elsevier BV]
卷期号:198: 111131-111131 被引量:16
标识
DOI:10.1016/j.measurement.2022.111131
摘要

• A generalized nonlinear sigmoid activation function is proposed. • The improved L 3/2 norm is used instead of kurtosis as the basis for selecting the best resonance frequency band. • The coefficient of variation is used to measure the difference between impact signal and health signal. • Signal characteristics of noise interference can be extracted by using the proposed method. In the fast kurtogram (FK), kurtosis is used as an indicator to locate the fault frequency band, and is widely aplied to fault diagnosis. However, kurtosis has been proven to favor a single large impulse rather than the required small fault characteristics, especially in the strong interference environment. To eliminate the impact of large-amplitude impact and further improve the accuracy of fault extraction, a method based on generalized nonlinear spectral sparsity (GNSS) is proposed for fault diagnosis of bearings. First, Z-score normalization and generalized nonlinear sigmoid activation function are used for signal preprocessing, and the scale distribution of the signal will be changed to eliminate the effects of large amplitude shocks under noisy environment. Then, to improve the sparsity measure capability, an improved L 3 / 2 norm is used to replace kurtosis as the basis for selecting the best resonance frequency band. Finally, the effectiveness of the GNSS is verified by simulation data and experimental data. Compared with FK method, the performance of fault extraction of the proposed method is significantly improved, especially for the interference of abnormal impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溴氧铋完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
时尚之桃给时尚之桃的求助进行了留言
1秒前
小二郎应助ZZ采纳,获得10
1秒前
FashionBoy应助认真水儿采纳,获得10
2秒前
灵巧的导师给灵巧的导师的求助进行了留言
2秒前
窗外落霞完成签到,获得积分10
3秒前
3秒前
yo一天完成签到,获得积分10
3秒前
敬老院N号应助简单的冬瓜采纳,获得30
3秒前
自由茈应助ageaaa采纳,获得30
3秒前
粒粒发布了新的文献求助10
4秒前
4秒前
陈陈完成签到,获得积分10
5秒前
科研通AI5应助jiajia采纳,获得10
5秒前
5秒前
今后应助小七采纳,获得10
5秒前
6秒前
风中沂完成签到 ,获得积分10
7秒前
simply完成签到 ,获得积分10
7秒前
cknckn11发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
yanzu应助lzr采纳,获得10
9秒前
chj发布了新的文献求助10
10秒前
10秒前
科研通AI5应助天天开心采纳,获得10
10秒前
jzw完成签到,获得积分20
11秒前
大魁完成签到,获得积分10
11秒前
佳丽完成签到,获得积分10
11秒前
12秒前
Revovler完成签到,获得积分10
12秒前
可靠的橘子完成签到,获得积分10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
jzw发布了新的文献求助10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771