Hyperspectral Anomaly Detection With Tensor Average Rank and Piecewise Smoothness Constraints

高光谱成像 异常检测 像素 模式识别(心理学) 张量(固有定义) 奇异值分解 人工智能 分段 异常(物理) 计算机科学 矩阵范数 数学 数据立方体 秩(图论) 数据挖掘 物理 特征向量 数学分析 组合数学 量子力学 凝聚态物理 纯数学
作者
Siyu Sun,Jun Liu,Xun Chen,Wei Li,Hongbin Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 8679-8692 被引量:12
标识
DOI:10.1109/tnnls.2022.3152252
摘要

Anomaly detection in hyperspectral images (HSIs) has attracted considerable interest in the remote-sensing domain, which aims to identify pixels with different spectral and spatial features from their surroundings. Most of the existing anomaly detection methods convert the 3-D data cube to a 2-D matrix composed of independent spectral vectors, which destroys the intrinsic spatial correlation between the pixels and their surrounding pixels, thus leading to considerable degradation in detection performance. In this article, we develop a tensor-based anomaly detection algorithm that can effectively preserve the spatial-spectral information of the original data. We first separate the 3-D HSI data into a background tensor and an anomaly tensor. Then the tensor nuclear norm based on the tensor singular value decomposition (SVD) is exploited to characterize the global low rank existing in both the spectral and spatial directions of the background tensor. In addition, the total variation (TV) regularization is incorporated due to the piecewise smoothness. For the anomaly component, the l2.1 norm is exploited to promote the group sparsity of anomalous pixels. In order to improve the ability of the algorithm to distinguish the anomaly from the background, we design a robust background dictionary. We first split the HSI data into local clusters by leveraging their spectral similarity and spatial distance. Then we develop a simple but effective way based on the SVD to select representative pixels as atoms. The constructed background dictionary can effectively represent the background materials and eliminate anomalies. Experimental results obtained using several real hyperspectral datasets demonstrate the superiority of the proposed method compared with some state-of-the-art anomaly detection algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
倒霉的芒果完成签到 ,获得积分10
1秒前
SciGPT应助semigreen采纳,获得10
1秒前
杨洋发布了新的文献求助10
1秒前
2秒前
Komorebi发布了新的文献求助10
2秒前
2秒前
落后的盼秋完成签到,获得积分10
2秒前
柏林寒冬应助拾起采纳,获得10
3秒前
八一发布了新的文献求助10
3秒前
3秒前
思源应助王大力采纳,获得10
3秒前
3秒前
3秒前
Evander发布了新的文献求助10
3秒前
4秒前
ccm应助geold采纳,获得10
4秒前
FashionBoy应助阿撕匹林采纳,获得10
5秒前
Zx_1993应助尚白swqd采纳,获得10
5秒前
赵颖完成签到 ,获得积分10
5秒前
5秒前
gb完成签到 ,获得积分10
6秒前
遨游的人完成签到,获得积分10
6秒前
活力的念蕾完成签到,获得积分10
7秒前
Criminology34应助镇痛蚊子采纳,获得10
7秒前
7秒前
freya发布了新的文献求助80
7秒前
寻上发布了新的文献求助10
7秒前
7秒前
7秒前
Tian完成签到,获得积分10
7秒前
8秒前
dyyisash发布了新的文献求助10
8秒前
琳琳发布了新的文献求助10
8秒前
Komorebi完成签到,获得积分10
8秒前
zwq发布了新的文献求助10
8秒前
zzzzz发布了新的文献求助10
9秒前
黄花发布了新的文献求助30
9秒前
9秒前
庚子鼠完成签到,获得积分10
9秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553