Hyperspectral Anomaly Detection With Tensor Average Rank and Piecewise Smoothness Constraints

高光谱成像 异常检测 像素 模式识别(心理学) 张量(固有定义) 奇异值分解 人工智能 分段 异常(物理) 计算机科学 矩阵范数 数学 数据立方体 秩(图论) 数据挖掘 物理 特征向量 数学分析 组合数学 量子力学 凝聚态物理 纯数学
作者
Siyu Sun,Jun Liu,Xun Chen,Wei Li,Hongbin Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 8679-8692 被引量:12
标识
DOI:10.1109/tnnls.2022.3152252
摘要

Anomaly detection in hyperspectral images (HSIs) has attracted considerable interest in the remote-sensing domain, which aims to identify pixels with different spectral and spatial features from their surroundings. Most of the existing anomaly detection methods convert the 3-D data cube to a 2-D matrix composed of independent spectral vectors, which destroys the intrinsic spatial correlation between the pixels and their surrounding pixels, thus leading to considerable degradation in detection performance. In this article, we develop a tensor-based anomaly detection algorithm that can effectively preserve the spatial-spectral information of the original data. We first separate the 3-D HSI data into a background tensor and an anomaly tensor. Then the tensor nuclear norm based on the tensor singular value decomposition (SVD) is exploited to characterize the global low rank existing in both the spectral and spatial directions of the background tensor. In addition, the total variation (TV) regularization is incorporated due to the piecewise smoothness. For the anomaly component, the l2.1 norm is exploited to promote the group sparsity of anomalous pixels. In order to improve the ability of the algorithm to distinguish the anomaly from the background, we design a robust background dictionary. We first split the HSI data into local clusters by leveraging their spectral similarity and spatial distance. Then we develop a simple but effective way based on the SVD to select representative pixels as atoms. The constructed background dictionary can effectively represent the background materials and eliminate anomalies. Experimental results obtained using several real hyperspectral datasets demonstrate the superiority of the proposed method compared with some state-of-the-art anomaly detection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AAA完成签到,获得积分10
刚刚
jovi发布了新的文献求助10
1秒前
慈祥的曼香完成签到,获得积分10
1秒前
2秒前
Simone发布了新的文献求助10
3秒前
3秒前
个性的紫菜应助LZH采纳,获得10
3秒前
自然秋柳完成签到 ,获得积分10
3秒前
3秒前
4秒前
打打应助小学生库里采纳,获得10
4秒前
4秒前
少帅的科研路完成签到,获得积分20
5秒前
wangayting发布了新的文献求助10
5秒前
kkk556发布了新的文献求助20
6秒前
6秒前
兴奋千兰发布了新的文献求助10
7秒前
huzhy完成签到,获得积分10
7秒前
小二郎应助圆潘采纳,获得10
8秒前
yixia222发布了新的文献求助10
9秒前
陶醉代云完成签到,获得积分10
10秒前
vg发布了新的文献求助10
10秒前
13秒前
13秒前
早早柚完成签到,获得积分10
14秒前
有人应助wyl采纳,获得10
15秒前
shenwei发布了新的文献求助20
15秒前
16秒前
16秒前
16秒前
逝月完成签到,获得积分10
17秒前
水牛发布了新的文献求助10
17秒前
17秒前
动听的蛟凤完成签到,获得积分20
18秒前
明明发布了新的文献求助10
18秒前
领导范儿应助huzhy采纳,获得10
18秒前
Hello应助Jeffery426采纳,获得10
20秒前
21秒前
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140690
求助须知:如何正确求助?哪些是违规求助? 2791543
关于积分的说明 7799499
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302159
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194