AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

计算机科学 利用 邻接矩阵 图形 算法 人工神经网络 人工智能 最大化 机器学习 理论计算机科学 数学优化 数学 计算机安全
作者
Wei Zhang,Fenghua Zhu,Yisheng Lv,Chang Tan,Ryan Wen Liu,Xin Zhang,Fei‐Yue Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:139: 103659-103659 被引量:70
标识
DOI:10.1016/j.trc.2022.103659
摘要

With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the adjacency relationship. However, as the topological structure of the real road network tends to be intricate, it is difficult to accurately quantify the correlations between nodes in advance. In this paper, we propose a graph convolutional network based adaptive graph learning algorithm (AdapGL) to acquire the complex dependencies. First, by developing a novel graph learning module, more possible correlations between nodes can be adaptively captured during training. Second, inspired by the expectation maximization (EM) algorithm, the parameters of the prediction network module and the graph learning module are optimized by alternate training. An elaborate loss function is leveraged for graph learning to ensure the sparsity of the generated affinity matrix. In this way, the expectation maximization of one part can be realized under the condition that the other part is the best estimate. Finally, the graph structure is updated by a weighted sum approach. The proposed algorithm can be applied to most graph convolution based networks for traffic forecast. Experimental results demonstrated that our method can not only further improve the accuracy of traffic prediction, but also effectively exploit the hidden correlations of the nodes. The source code is available at https://github.com/goaheand/AdapGL-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安安的小板栗完成签到,获得积分10
3秒前
大个应助愿景采纳,获得10
6秒前
蓝桉完成签到 ,获得积分10
7秒前
9秒前
艾瑞克完成签到,获得积分10
10秒前
Haonan完成签到,获得积分10
10秒前
stk完成签到,获得积分10
10秒前
阿一完成签到 ,获得积分10
12秒前
小粒橙完成签到 ,获得积分10
13秒前
易吴鱼完成签到 ,获得积分10
15秒前
momo完成签到,获得积分10
16秒前
孙刚完成签到 ,获得积分10
18秒前
bkagyin应助WangY1263采纳,获得10
19秒前
艾瑞克完成签到,获得积分10
20秒前
木羡完成签到 ,获得积分10
20秒前
Faceless完成签到,获得积分10
23秒前
28秒前
dbdxyty完成签到,获得积分10
29秒前
WangY1263发布了新的文献求助10
31秒前
豌豆应助科研通管家采纳,获得10
31秒前
cdercder应助科研通管家采纳,获得10
32秒前
cdercder应助科研通管家采纳,获得10
32秒前
星辰大海应助科研通管家采纳,获得10
32秒前
天天快乐应助科研通管家采纳,获得10
32秒前
Singularity应助科研通管家采纳,获得10
32秒前
35秒前
PhishCellar完成签到 ,获得积分10
37秒前
ira完成签到,获得积分10
41秒前
liang19640908完成签到 ,获得积分10
42秒前
积极废物完成签到 ,获得积分10
47秒前
蔡从安发布了新的文献求助10
48秒前
51秒前
愤怒的听双完成签到,获得积分10
52秒前
安安滴滴完成签到 ,获得积分10
53秒前
YOUNG-M发布了新的文献求助10
55秒前
饱满语风完成签到 ,获得积分10
57秒前
58秒前
Arthur完成签到 ,获得积分10
1分钟前
YOUNG-M完成签到,获得积分10
1分钟前
耍酷的雪糕完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776051
求助须知:如何正确求助?哪些是违规求助? 3321626
关于积分的说明 10206478
捐赠科研通 3036712
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797439
科研通“疑难数据库(出版商)”最低求助积分说明 757841