AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

计算机科学 利用 邻接矩阵 图形 算法 人工神经网络 人工智能 最大化 机器学习 理论计算机科学 数学优化 数学 计算机安全
作者
Wei Zhang,Fenghua Zhu,Yisheng Lv,Chang Tan,Ryan Wen Liu,Xin Zhang,Fei‐Yue Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:139: 103659-103659 被引量:70
标识
DOI:10.1016/j.trc.2022.103659
摘要

With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the adjacency relationship. However, as the topological structure of the real road network tends to be intricate, it is difficult to accurately quantify the correlations between nodes in advance. In this paper, we propose a graph convolutional network based adaptive graph learning algorithm (AdapGL) to acquire the complex dependencies. First, by developing a novel graph learning module, more possible correlations between nodes can be adaptively captured during training. Second, inspired by the expectation maximization (EM) algorithm, the parameters of the prediction network module and the graph learning module are optimized by alternate training. An elaborate loss function is leveraged for graph learning to ensure the sparsity of the generated affinity matrix. In this way, the expectation maximization of one part can be realized under the condition that the other part is the best estimate. Finally, the graph structure is updated by a weighted sum approach. The proposed algorithm can be applied to most graph convolution based networks for traffic forecast. Experimental results demonstrated that our method can not only further improve the accuracy of traffic prediction, but also effectively exploit the hidden correlations of the nodes. The source code is available at https://github.com/goaheand/AdapGL-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Liufgui应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
MS903发布了新的文献求助10
3秒前
乐乐应助Roses采纳,获得10
7秒前
CAOHOU应助余航采纳,获得10
7秒前
Lsyii发布了新的文献求助10
7秒前
爆米花应助Iceberg采纳,获得10
8秒前
认真的傲柏完成签到,获得积分20
16秒前
冷傲半邪发布了新的文献求助60
16秒前
Lsyii完成签到,获得积分10
17秒前
19秒前
一只鱼完成签到,获得积分10
20秒前
22秒前
完美世界应助哈哈哈嗝采纳,获得10
25秒前
NexusExplorer应助糟糕的夏云采纳,获得10
25秒前
25秒前
28秒前
桐桐应助皓月星辰采纳,获得10
29秒前
高大田应助韩凡采纳,获得10
30秒前
30秒前
一只鱼发布了新的文献求助10
30秒前
DrDaiJune完成签到,获得积分10
31秒前
李健应助开心跳跳糖采纳,获得10
32秒前
JQM发布了新的文献求助10
32秒前
33秒前
郑zz完成签到,获得积分20
33秒前
核桃发布了新的文献求助10
35秒前
科研公主完成签到,获得积分10
35秒前
。。。完成签到,获得积分10
36秒前
36秒前
37秒前
郑zz发布了新的文献求助10
37秒前
wyz发布了新的文献求助10
38秒前
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396