AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

计算机科学 利用 邻接矩阵 图形 算法 人工神经网络 人工智能 最大化 机器学习 理论计算机科学 数学优化 数学 计算机安全
作者
Wei Zhang,Fenghua Zhu,Yisheng Lv,Chang Tan,Ryan Wen Liu,Xin Zhang,Fei‐Yue Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:139: 103659-103659 被引量:79
标识
DOI:10.1016/j.trc.2022.103659
摘要

With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the adjacency relationship. However, as the topological structure of the real road network tends to be intricate, it is difficult to accurately quantify the correlations between nodes in advance. In this paper, we propose a graph convolutional network based adaptive graph learning algorithm (AdapGL) to acquire the complex dependencies. First, by developing a novel graph learning module, more possible correlations between nodes can be adaptively captured during training. Second, inspired by the expectation maximization (EM) algorithm, the parameters of the prediction network module and the graph learning module are optimized by alternate training. An elaborate loss function is leveraged for graph learning to ensure the sparsity of the generated affinity matrix. In this way, the expectation maximization of one part can be realized under the condition that the other part is the best estimate. Finally, the graph structure is updated by a weighted sum approach. The proposed algorithm can be applied to most graph convolution based networks for traffic forecast. Experimental results demonstrated that our method can not only further improve the accuracy of traffic prediction, but also effectively exploit the hidden correlations of the nodes. The source code is available at https://github.com/goaheand/AdapGL-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力书包完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
QAQSS完成签到 ,获得积分10
2秒前
偶做前堂客完成签到 ,获得积分10
5秒前
静静完成签到 ,获得积分10
6秒前
紫婧完成签到,获得积分10
6秒前
BowieHuang应助活力书包采纳,获得10
6秒前
wang完成签到,获得积分10
8秒前
2010完成签到,获得积分10
9秒前
无脚鸟完成签到,获得积分10
9秒前
10秒前
英姑应助Lumos采纳,获得10
10秒前
terryok完成签到 ,获得积分10
13秒前
von完成签到,获得积分10
14秒前
历史真相完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
机灵的安南完成签到 ,获得积分10
18秒前
SY15732023811完成签到 ,获得积分10
19秒前
梅特卡夫完成签到,获得积分10
20秒前
燕燕完成签到,获得积分10
22秒前
酷炫书芹完成签到 ,获得积分10
23秒前
不扯先生完成签到,获得积分10
23秒前
24秒前
24秒前
wbb完成签到 ,获得积分10
24秒前
嘻嗷完成签到,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
28秒前
Gloria完成签到 ,获得积分10
29秒前
yyy完成签到 ,获得积分10
30秒前
31秒前
碗在水中央完成签到 ,获得积分10
31秒前
争气完成签到 ,获得积分10
33秒前
Xiaoyisheng完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
36秒前
希达通完成签到 ,获得积分10
39秒前
alvis完成签到 ,获得积分10
39秒前
40秒前
哥哥完成签到 ,获得积分10
43秒前
欢呼妙菱完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773428
求助须知:如何正确求助?哪些是违规求助? 5611061
关于积分的说明 15431143
捐赠科研通 4905922
什么是DOI,文献DOI怎么找? 2639929
邀请新用户注册赠送积分活动 1587829
关于科研通互助平台的介绍 1542833