AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

计算机科学 利用 邻接矩阵 图形 算法 人工神经网络 人工智能 最大化 机器学习 理论计算机科学 数学优化 数学 计算机安全
作者
Wei Zhang,Fenghua Zhu,Yisheng Lv,Chang Tan,Ryan Wen Liu,Xin Zhang,Fei‐Yue Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:139: 103659-103659 被引量:79
标识
DOI:10.1016/j.trc.2022.103659
摘要

With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the adjacency relationship. However, as the topological structure of the real road network tends to be intricate, it is difficult to accurately quantify the correlations between nodes in advance. In this paper, we propose a graph convolutional network based adaptive graph learning algorithm (AdapGL) to acquire the complex dependencies. First, by developing a novel graph learning module, more possible correlations between nodes can be adaptively captured during training. Second, inspired by the expectation maximization (EM) algorithm, the parameters of the prediction network module and the graph learning module are optimized by alternate training. An elaborate loss function is leveraged for graph learning to ensure the sparsity of the generated affinity matrix. In this way, the expectation maximization of one part can be realized under the condition that the other part is the best estimate. Finally, the graph structure is updated by a weighted sum approach. The proposed algorithm can be applied to most graph convolution based networks for traffic forecast. Experimental results demonstrated that our method can not only further improve the accuracy of traffic prediction, but also effectively exploit the hidden correlations of the nodes. The source code is available at https://github.com/goaheand/AdapGL-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助xu采纳,获得10
刚刚
梦想成神发布了新的文献求助10
刚刚
小蘑菇应助雨醉东风采纳,获得10
刚刚
1秒前
1秒前
1秒前
自然怀梦发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
kiddchow发布了新的文献求助20
2秒前
飞ss完成签到,获得积分20
2秒前
六芹完成签到,获得积分20
3秒前
3秒前
猪猪hero应助爱听歌的老九采纳,获得10
4秒前
4秒前
Jasper应助很难过采纳,获得10
4秒前
黎呀发布了新的文献求助10
4秒前
难过剑成完成签到,获得积分10
4秒前
堇妗发布了新的文献求助30
4秒前
FuuKa完成签到,获得积分10
5秒前
乘凉完成签到,获得积分10
5秒前
烟花应助Bowen Chu采纳,获得10
5秒前
Donker发布了新的文献求助10
6秒前
linzhi_发布了新的文献求助10
6秒前
吕yj发布了新的文献求助10
6秒前
科研通AI6应助庄冬丽采纳,获得10
6秒前
慕子默发布了新的文献求助10
6秒前
zhucan应助龙井茶采纳,获得10
6秒前
lbw完成签到 ,获得积分10
7秒前
7秒前
7秒前
梦想成神完成签到,获得积分20
7秒前
小马甲应助qd采纳,获得10
7秒前
我需要文献完成签到,获得积分10
7秒前
今后应助yu采纳,获得10
7秒前
薄荷味发布了新的文献求助10
7秒前
冰菱发布了新的文献求助10
8秒前
Zxj发布了新的文献求助10
8秒前
呱呱完成签到 ,获得积分10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498