AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

计算机科学 利用 邻接矩阵 图形 算法 人工神经网络 人工智能 最大化 机器学习 理论计算机科学 数学优化 数学 计算机安全
作者
Wei Zhang,Fenghua Zhu,Yisheng Lv,Chang Tan,Ryan Wen Liu,Xin Zhang,Fei‐Yue Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:139: 103659-103659 被引量:79
标识
DOI:10.1016/j.trc.2022.103659
摘要

With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the adjacency relationship. However, as the topological structure of the real road network tends to be intricate, it is difficult to accurately quantify the correlations between nodes in advance. In this paper, we propose a graph convolutional network based adaptive graph learning algorithm (AdapGL) to acquire the complex dependencies. First, by developing a novel graph learning module, more possible correlations between nodes can be adaptively captured during training. Second, inspired by the expectation maximization (EM) algorithm, the parameters of the prediction network module and the graph learning module are optimized by alternate training. An elaborate loss function is leveraged for graph learning to ensure the sparsity of the generated affinity matrix. In this way, the expectation maximization of one part can be realized under the condition that the other part is the best estimate. Finally, the graph structure is updated by a weighted sum approach. The proposed algorithm can be applied to most graph convolution based networks for traffic forecast. Experimental results demonstrated that our method can not only further improve the accuracy of traffic prediction, but also effectively exploit the hidden correlations of the nodes. The source code is available at https://github.com/goaheand/AdapGL-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
简单雨安发布了新的文献求助10
1秒前
lr发布了新的文献求助100
2秒前
小二郎应助派123采纳,获得10
2秒前
Yexidong完成签到,获得积分10
3秒前
wxyshare应助xinran采纳,获得10
4秒前
可心儿完成签到,获得积分10
4秒前
彩色碧菡完成签到,获得积分10
4秒前
5秒前
鱼yu完成签到,获得积分10
5秒前
ghhhn完成签到,获得积分10
10秒前
zhou完成签到 ,获得积分10
11秒前
ZZ发布了新的文献求助10
11秒前
一颗竹笋发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
电量满格中完成签到 ,获得积分10
14秒前
欢呼晓博发布了新的文献求助10
14秒前
Planck完成签到,获得积分10
14秒前
情怀应助刘文静采纳,获得10
14秒前
萧狗子完成签到,获得积分10
14秒前
16秒前
Planck发布了新的文献求助10
18秒前
清水发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
DrJzz发布了新的文献求助20
19秒前
joyee完成签到,获得积分10
20秒前
派123发布了新的文献求助10
20秒前
22秒前
22秒前
23秒前
23秒前
A晨发布了新的文献求助10
24秒前
24秒前
圈圈黄发布了新的文献求助10
24秒前
科研通AI6应助爱笑纸鹤采纳,获得30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700