A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard

果园 人工智能 计算机视觉 跟踪(教育) 帧(网络) 计算机科学 相关系数 后备箱 判别式 职位(财务) 数学 园艺 植物 机器学习 经济 财务 生物 电信 教育学 心理学
作者
Fangfang Gao,Wentai Fang,Xiaoming Sun,Zhenchao Wu,Guanao Zhao,Li Guo,Rui Li,Longsheng Fu,Qin Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:197: 107000-107000 被引量:69
标识
DOI:10.1016/j.compag.2022.107000
摘要

Accurate count of fruits is important for producers to make adequate decisions in production management. Although some algorithms based on machine vision have been developed to count fruits which were all implemented by tracking fruits themselves, those algorithms often make mismatches or even lose targets during the tracking process due to the large number of highly similar fruits in appearance. This study aims to develop an automated video processing method for improving the counting accuracy of apple fruits in orchard environment with modern vertical fruiting-wall architecture. As the trunk is normally larger than fruits and appears clearly in the video, the trunk is thus selected as a single-object tracking target to reach a higher accuracy and higher speed tracking than the commonly used method of fruit-based multi-object tracking. This method was trained using a YOLOv4-tiny network integrated with a CSR-DCF (channel spatial reliability-discriminative correlation filter) algorithm. Reference displacement between consecutive frames was calculated according to the frame motion trajectory for predicting possible fruit locations in terms of previously detected positions. The minimum Euclidean distance of detected fruit position and the predicted fruit position was calculated to match the same fruits between consecutive video frames. Finally, a unique ID was assigned to each fruit for counting. Results showed that mean average precision of 99.35% for fruit and trunk detection was achieved in this study, which could provide a good basis for fruit accurate counting. A counting accuracy of 91.49% and a correlation coefficient R2 of 0.9875 with counting performed by manual counting were reached in orchard videos. Besides, proposed counting method can be implemented on CPU at 2 ∼ 5 frames per second (fps). These promising results demonstrate the potential of this method to provide yield data for apple fruits or even other types of fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zero_sky完成签到,获得积分10
1秒前
过过过完成签到,获得积分10
2秒前
TT完成签到,获得积分10
3秒前
鬼才之眼发布了新的文献求助10
3秒前
丘比特应助小闵采纳,获得10
4秒前
paparazzi221应助一辉采纳,获得50
4秒前
小平完成签到,获得积分10
5秒前
kx完成签到 ,获得积分10
7秒前
orixero应助zero_sky采纳,获得10
7秒前
上官若男应助奕初阳采纳,获得10
7秒前
Qing完成签到,获得积分10
7秒前
8秒前
9秒前
烟花应助克利夫兰采纳,获得10
11秒前
wa发布了新的文献求助10
12秒前
充电宝应助HH采纳,获得10
12秒前
12秒前
12秒前
NIUB发布了新的文献求助10
13秒前
14秒前
16秒前
CipherSage应助爱学习的源儿采纳,获得10
16秒前
yunnguw完成签到,获得积分20
16秒前
17秒前
17秒前
Orange应助危险份子采纳,获得10
17秒前
briskguo完成签到,获得积分20
17秒前
小闵发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
21秒前
21秒前
奕初阳发布了新的文献求助10
22秒前
23秒前
NIUB完成签到,获得积分10
23秒前
25秒前
Dr.Lyo发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052