This paper is concerned with the numerical approximation of the nonlinear time fractional Schrödinger equation subject to the initial and Neumann boundary conditions whose solution exhibits an initial weak singularity. A linearized fully discrete scheme is presented by using the finite difference method on graded meshes for temporal discretization and Gauss Lobatto Legendre Birkhoff spectral method for spatial discretization. Based on a temporal-spatial error splitting argument, the boundedness of the numerical solution in the L∞ norm is proved rigorously. The convergence of the proposed scheme is obtained unconditionally. The theoretical results are verified through some numerical examples.