Fiber-integrated optical tweezers for ballistic transport and trapping yeast cells

光学镊子 俘获 镊子 材料科学 光学 光纤 毛细管作用 梁(结构) 多模光纤 存水弯(水管) 纤维 纳米技术 光电子学 物理 复合材料 生物 气象学 生态学
作者
Hongchang Deng,Dawei Chen,Rui Wang,Fuwang Li,Zhongyue Luo,Shijie Deng,Jun Yin,Lingyao Yu,Wentao Zhang,Libo Yuan
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:14 (18): 6941-6948 被引量:11
标识
DOI:10.1039/d1nr08348a
摘要

Due to their unique operational flexibility and ability to facilitate functional integration, the fascinating application of optical fibers has recently attracted significant attention in the field of optical tweezers and optical manipulation. The traditional optical fiber tweezers (OFTs) can easily trap microparticles in the front or side of the trapping tool, instead of behind. Herein, we propose and demonstrate a novel capillary optical fiber tweezer (COFT) to break the limitation of the optical trapping direction and extend the spatial range of optical trapping. The device consists of a cascade structure of single-mode fiber and capillary optical fiber (COF), which was used to excite higher-order modes in the COF. A COF taper tip was introduced to converge the multimode field, which created a focused output beam, realizing the ballistic transport of multi-yeast cells at the surface of the COF taper tip and their trapping by multiple optical potential wells of the focused output beam. The experimental results showed that the maximum transport length and speed of the cells were greater than 150 μm and 10 μm s-1, respectively, and at least three cells could be trapped simultaneously. The simulation results showed that the trap stiffness of COFT in several potential wells was in the range of 10-40 pN μm-1 W-1, which indicates that COFT has a good trap performance. Therefore, COFT greatly expands the region of the optical potential well, thus guiding and trapping microparticles distributed on the entire surface of the COF taper tip. This device can also greatly improve the optical trapping ability of single or multiple microparticles, providing a new tool for researchers committed to research on micro-nano objects and cells, which is expected to be widely used in the fields of targeted drug delivery, cell dynamic analysis, microfluidic chip driving, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhtgang完成签到,获得积分10
刚刚
洗杯子发布了新的文献求助10
刚刚
CipherSage应助huaaaaaa1采纳,获得10
刚刚
刚刚
1秒前
1秒前
DukeTao发布了新的文献求助10
2秒前
西北孤傲的狼完成签到,获得积分10
2秒前
Foremelon完成签到,获得积分10
3秒前
3秒前
小蘑菇应助纳米纤维素采纳,获得10
4秒前
骨小梁完成签到,获得积分20
4秒前
田様应助朴实草莓采纳,获得10
4秒前
枝桠发布了新的文献求助10
5秒前
洗杯子完成签到,获得积分10
6秒前
称心如意完成签到 ,获得积分10
6秒前
zyd发布了新的文献求助10
6秒前
7秒前
骨小梁发布了新的文献求助10
7秒前
满意水瑶完成签到,获得积分10
8秒前
一个稚气的小孩完成签到,获得积分10
8秒前
orixero应助iufan采纳,获得10
9秒前
9秒前
冰山未闯完成签到,获得积分10
9秒前
10秒前
我是老大应助Amber采纳,获得10
10秒前
香蕉觅云应助xxxxxXPoVo采纳,获得10
10秒前
10秒前
11秒前
11秒前
小天发布了新的文献求助30
13秒前
852应助纳米纤维素采纳,获得10
14秒前
妍妍汐发布了新的文献求助10
14秒前
SAINT发布了新的文献求助10
14秒前
嚣张的豆豆完成签到 ,获得积分10
15秒前
16秒前
yt发布了新的文献求助10
16秒前
17秒前
田様应助乌龙茶ICE采纳,获得10
17秒前
Akim应助城南花已开采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134700
求助须知:如何正确求助?哪些是违规求助? 2785629
关于积分的说明 7773333
捐赠科研通 2441325
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825