Generalization of Deep Learning Gesture Classification in Robotic-Assisted Surgical Data: From Dry Lab to Clinical-Like Data

一般化 计算机科学 人工智能 手势 机器学习 模式识别(心理学) 计算机视觉 数学 数学分析
作者
Danit Itzkovich,Yarden Sharon,Anthony Jarc,Yael Refaely,Ilana Nisky
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (3): 1329-1340 被引量:9
标识
DOI:10.1109/jbhi.2021.3117784
摘要

Objective: Robotic-assisted minimally invasive surgery (RAMIS) became a common practice in modern medicine and is widely studied. Surgical procedures require prolonged and complex movements; therefore, classifying surgical gestures could be helpful to characterize surgeon performance. The public release of the JIGSAWS dataset facilitates the development of classification algorithms; however, it is not known how algorithms trained on dry-lab data generalize to real surgical situations. Methods: We trained a Long Short-Term Memory (LSTM) network for the classification of dry lab and clinical-like data into gestures. Results: We show that a network that was trained on the JIGSAWS data does not generalize well to other dry-lab data and to clinical-like data. Using rotation augmentation improves performance on dry-lab tasks, but fails to improve the performance on clinical-like data. However, using the same network architecture, adding the six joint angles of the patient-side manipulators (PSMs) features, and training the network on the clinical-like data together lead to notable improvement in the classification of the clinical-like data. Discussion: Using the JIGSAWS dataset alone is insufficient for training a gesture classification network for clinical data. However, it can be very informative for determining the architecture of the network, and with training on a small sample of clinical data, can lead to acceptable classification performance. Significance: Developing efficient algorithms for gesture classification in clinical surgical data is expected to advance understanding of surgeon sensorimotor control in RAMIS, the automation of surgical skill evaluation, and the automation of surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助ORG采纳,获得10
刚刚
打打应助怕黑的青丝采纳,获得10
刚刚
聂123完成签到,获得积分10
刚刚
Emma-yuan完成签到,获得积分20
2秒前
拆东墙发布了新的文献求助10
2秒前
思源应助wfy采纳,获得10
2秒前
2秒前
3秒前
勤劳平萱完成签到,获得积分20
3秒前
3秒前
Jasper应助牧之原翔子采纳,获得10
4秒前
4秒前
初一完成签到 ,获得积分20
4秒前
4秒前
HHCC1006发布了新的文献求助10
4秒前
XiaoDai完成签到,获得积分10
6秒前
7秒前
Merak发布了新的文献求助400
7秒前
啊哈哈完成签到 ,获得积分10
7秒前
sodawater发布了新的文献求助10
7秒前
7秒前
8秒前
Shelton发布了新的文献求助10
8秒前
9秒前
科研通AI5应助拆东墙采纳,获得10
9秒前
小威发布了新的文献求助10
9秒前
可爱的函函应助MSY采纳,获得30
10秒前
10秒前
zym完成签到,获得积分20
11秒前
Hello应助jojo采纳,获得10
12秒前
你真有劲儿完成签到,获得积分10
12秒前
INGRID发布了新的文献求助30
13秒前
13秒前
绝情继父发布了新的文献求助10
13秒前
微微发布了新的文献求助10
13秒前
Michelle完成签到,获得积分10
14秒前
科研通AI5应助HQJ采纳,获得10
15秒前
16秒前
16秒前
phy-cg完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267