Superfast-Expanding Porous Hydrogels: Pushing New Frontiers in Converting Chemical Potential into Useful Mechanical Work

材料科学 自愈水凝胶 多孔性 聚合物 多孔介质 化学工程 单体 丙烯酸 高吸水性高分子 两亲性 聚合 混合(物理) 工作(物理) 共聚物 纳米技术 复合材料 高分子化学 热力学 工程类 物理 量子力学
作者
Hema Choudhary,Srinivasa R. Raghavan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (11): 13733-13742 被引量:9
标识
DOI:10.1021/acsami.2c00645
摘要

Superabsorbent polymer gels can absorb large amounts of water (100-1000× their dry weight). For the past 50 years, many scientists such as de Gennes have proposed to extract mechanical work from gel expansion/contraction, which could pave the way for "artificial muscles". However, slow rates of gel expansion have limited these efforts: macroscale (∼cm) gels take over 24 h to expand to their equilibrium size. Gels can be made to expand faster if their characteristic length scale is reduced, e.g., by making a macroscopic gel porous. Still, gels that are both superabsorbent and able to expand rapidly have not yet been realized. Here, we create gels at the macroscale (∼cm or larger) that are porous, highly robust, superabsorbent and expand much faster than any gels thus far. Our approach involves the in situ foaming of a monomer solution (acrylic acid and acrylamide) using a double-barreled syringe that has acid and base in its two barrels. Gas (CO2) is generated at the mixing tip of the syringe by the acid-base reaction, and gas bubbles are stabilized by an amphiphilic polymer in one of the barrels. The monomers are then polymerized by ultraviolet (UV) light to form the gel around the bubbles, and the material is dried under ambient conditions to give a porous solid. When this dry gel is added to water, it absorbs water at a rate of 20 g/g·s until an equilibrium is achieved at ∼300× its weight. In the process, each gel dimension increases by ∼20%/s until its final dimensions are more than 3× larger. Such rapid and appreciable expansion can be easily observed by the eye, and remarkably, the swollen gel is robust enough to be picked up by hand. SEM images reveal a porosity of >90% and an interconnected network of pores. The gels are responsive to pH, and a full cycle of expansion (in regular water) and contraction (at pH 10 or in ethanol) can be completed within about 60 s. We use gel expansion to rapidly lift weights against gravity, resulting in ∼0.4 mJ of work being done over 40 s, which translates to a power density of 260 mW/kg. This ability to harness the chemical potential energy from the gel to do useful mechanical work could enable new designs for mechano-chemical engines─and potentially for artificial muscles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoeeeey发布了新的文献求助10
刚刚
从容的小虾米完成签到,获得积分10
刚刚
Islay50ppm完成签到,获得积分10
1秒前
荣誉完成签到,获得积分10
2秒前
xcc完成签到,获得积分10
2秒前
2秒前
duoduo完成签到 ,获得积分20
2秒前
宇智波白哉完成签到 ,获得积分10
2秒前
tuntunliu完成签到,获得积分10
2秒前
2秒前
如意的代亦完成签到,获得积分20
3秒前
寒冷书竹发布了新的文献求助10
3秒前
啦啦啦完成签到,获得积分10
3秒前
3秒前
3秒前
LL完成签到,获得积分10
5秒前
优秀扬完成签到,获得积分10
5秒前
5秒前
彭彭完成签到,获得积分10
6秒前
甜美的瑾瑜完成签到,获得积分10
6秒前
Kiyoi发布了新的文献求助10
6秒前
6秒前
6秒前
平常的雁凡完成签到,获得积分20
6秒前
7秒前
王嘉文完成签到 ,获得积分20
7秒前
ww完成签到,获得积分10
7秒前
7秒前
卡皮巴拉不烦恼完成签到,获得积分10
7秒前
8秒前
9秒前
pengnanhao发布了新的文献求助10
9秒前
寻xun完成签到,获得积分20
9秒前
9秒前
zp123456发布了新的文献求助30
9秒前
10秒前
上官若男应助劣根采纳,获得10
10秒前
超帅的半凡完成签到,获得积分10
11秒前
蜻蜓1005完成签到 ,获得积分10
11秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904