Radiomic analysis of liver grafts from brain-dead donors can predict early allograft dysfunction following transplantation: a proof-of-concept study

医学 肝移植 队列 多元分析 脂肪变性 生物标志物 内科学 移植 外科 生物化学 化学
作者
Fabien Robin,Zineddine Khene,Marie Livin,Corentin Sumner,Pauline Houssel-Debry,Laurent Sulpice,Karim Boudjema
出处
期刊:Hpb [Elsevier]
卷期号:24 (9): 1527-1534
标识
DOI:10.1016/j.hpb.2022.03.009
摘要

Abstract

Background

Selection of liver grafts suitable for transplantation (LT) mainly depends on a surgeon's subjective assessment. This study aimed to investigate the role of radiomic analysis of donor-liver CTs after brain death (DBD) to predict the occurrence of early posttransplant allograft dysfunction (EAD).

Methods

We retrospectively extracted and analyzed the left lobe radiomic features from CT scans of DBD livers in training and validation cohorts. Multivariate analysis was performed to identify predictors of EAD.

Results

From 126 LTs included in the study in the training cohort, 27 (21.4%) had an EAD. For each patient, 279 radiomic features were extracted of which 5 were associated with EAD (AUC = 0.81) (95% CI 0.72–0.89). Among donor and recipient clinical characteristics, cardiac arrest, steatosis on donor's CT, cold ischemic time and age of recipient were also identified as independent risk factors for EAD. Combined radiomic signature and clinical risk factors showed a strong predictive performance for EAD with a C-index of 0.90 (95% CI 0.84–0.96). A validation cohort of 23 patients confirmed these results.

Conclusion

Radiomic signatures extracted from donor CT scan, independently or combined with clinical risk factors is an objective and accurate biomarker for prediction of EAD after LT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Xx.采纳,获得10
1秒前
zhangscience发布了新的文献求助10
2秒前
深情安青应助大方嵩采纳,获得10
3秒前
英俊的铭应助大方嵩采纳,获得10
3秒前
李还好完成签到,获得积分10
4秒前
满意的柏柳完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
buno应助88采纳,获得10
7秒前
8秒前
三千世界完成签到,获得积分10
8秒前
8秒前
愉快的访旋完成签到,获得积分10
9秒前
Alpha完成签到,获得积分10
10秒前
大大发布了新的文献求助30
10秒前
翠翠发布了新的文献求助10
11秒前
半山发布了新的文献求助10
12秒前
12秒前
天天快乐应助CO2采纳,获得10
12秒前
隐形曼青应助junzilan采纳,获得10
13秒前
Dksido发布了新的文献求助10
13秒前
14秒前
思源应助卓哥采纳,获得10
14秒前
mysci完成签到,获得积分10
17秒前
18秒前
Quzhengkai发布了新的文献求助10
19秒前
19秒前
20秒前
落寞晓灵完成签到,获得积分10
20秒前
ORAzzz应助翠翠采纳,获得20
21秒前
zoe完成签到,获得积分10
21秒前
习习应助学术小白采纳,获得10
21秒前
22秒前
23秒前
tianny关注了科研通微信公众号
24秒前
24秒前
CO2发布了新的文献求助10
24秒前
桐桐应助zhangscience采纳,获得10
25秒前
求助发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808