Deep learning for caries detection: A systematic review

透照 射线照相术 人工智能 光学相干层析成像 医学 深度学习 梅德林 诊断准确性 可靠性(半导体) 牙科 医学物理学 计算机科学 口腔正畸科 放射科 病理 功率(物理) 物理 量子力学 政治学 法学
作者
Hossein Mohammad‐Rahimi,Saeed Reza Motamedian,Mohammad Hossein Rohban,Joachim Krois,Sergio Uribe,Erfan Mahmoudinia,Rata Rokhshad,Mohadeseh Nadimi,Falk Schwendicke
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:122: 104115-104115 被引量:172
标识
DOI:10.1016/j.jdent.2022.104115
摘要

Objectives: Detecting caries lesions is challenging for dentists, and deep learning models may help practitioners to increase accuracy and reliability.We aimed to systematically review deep learning studies on caries detection.Data: We selected diagnostic accuracy studies that used deep learning models on dental imagery (including radiographs, photographs, optical coherence tomography images, near-infrared light transillumination images).The latest version of the quality assessment tool for diagnostic accuracy studies (QUADAS-2) tool was used for risk of bias assessment.Meta-analysis was not performed due to heterogeneity in the studies methods and their performance measurements.Sources: Databases (Medline via PubMed, Google Scholar, Scopus, Embase) and a repository (ArXiv) were screened for publications published after 2010, without any limitation on language.Study selection: From 252 potentially eligible references, 48 studies were assessed full-text and 42 included, using classification (n=26), object detection (n=6), or segmentation models (n=10).A wide range of performance metrics was used; image, object or pixel accuracy ranged between 68%-99%.The minority of studies (n=11) showed a low risk of biases in all domains, and 13 studies (31.0%) low risk for concerns regarding applicability.The accuracy of caries classification models varied, i.e. 71% to 96% on intra-oral photographs, 82% to 99.2% on periapical radiographs, 87.6% to 95.4% on bitewing radiographs, 68.0% to 78.0% on near-infrared transillumination images, 88.7% to 95.2% on optical coherence tomography images, and 86.1% to 96.1% on panoramic radiographs.Pooled diagnostic odds ratios varied from 2.27 to 32767.For detection and segmentation models, heterogeneity in reporting did not allow useful pooling.Conclusion: An increasing number of studies investigated caries detection using deep learning, with a diverse types of architectures being employed.Reported accuracy seems promising, while study and reporting quality are currently low.Clinical significance: Deep learning models can be considered as an assistant for decisions regarding the presence or absence of carious lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助沉默的宛筠采纳,获得10
刚刚
1秒前
从若关注了科研通微信公众号
1秒前
英语完成签到,获得积分10
1秒前
yulee完成签到,获得积分10
1秒前
2秒前
慕青应助aa采纳,获得30
3秒前
vvan发布了新的文献求助10
3秒前
田様应助落后钢铁侠采纳,获得10
3秒前
3秒前
SJTU_Rainking发布了新的文献求助10
3秒前
3秒前
4秒前
Srui完成签到,获得积分10
4秒前
4秒前
西门子云发布了新的文献求助10
4秒前
4秒前
5秒前
豆子完成签到,获得积分10
5秒前
5秒前
5秒前
大模型应助李山鬼采纳,获得10
5秒前
ZZ发布了新的文献求助10
6秒前
wyl发布了新的文献求助10
6秒前
情怀应助知名不具采纳,获得10
6秒前
6秒前
兔老大完成签到,获得积分10
6秒前
花水木发布了新的文献求助10
7秒前
感冒了发布了新的文献求助30
7秒前
SJTU_Rainking完成签到,获得积分10
7秒前
1234发布了新的文献求助10
8秒前
hjy发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
哈哈发布了新的文献求助10
9秒前
sophia完成签到 ,获得积分10
9秒前
简化为发布了新的文献求助10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130