Deep learning for caries detection: A systematic review

透照 射线照相术 人工智能 光学相干层析成像 医学 深度学习 梅德林 诊断准确性 可靠性(半导体) 牙科 医学物理学 计算机科学 口腔正畸科 放射科 病理 功率(物理) 物理 量子力学 政治学 法学
作者
Hossein Mohammad‐Rahimi,Saeed Reza Motamedian,Mohammad Hossein Rohban,Joachim Krois,Sergio Uribe,Erfan Mahmoudinia,Rata Rokhshad,Mohadeseh Nadimi,Falk Schwendicke
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:122: 104115-104115 被引量:118
标识
DOI:10.1016/j.jdent.2022.104115
摘要

Objectives: Detecting caries lesions is challenging for dentists, and deep learning models may help practitioners to increase accuracy and reliability.We aimed to systematically review deep learning studies on caries detection.Data: We selected diagnostic accuracy studies that used deep learning models on dental imagery (including radiographs, photographs, optical coherence tomography images, near-infrared light transillumination images).The latest version of the quality assessment tool for diagnostic accuracy studies (QUADAS-2) tool was used for risk of bias assessment.Meta-analysis was not performed due to heterogeneity in the studies methods and their performance measurements.Sources: Databases (Medline via PubMed, Google Scholar, Scopus, Embase) and a repository (ArXiv) were screened for publications published after 2010, without any limitation on language.Study selection: From 252 potentially eligible references, 48 studies were assessed full-text and 42 included, using classification (n=26), object detection (n=6), or segmentation models (n=10).A wide range of performance metrics was used; image, object or pixel accuracy ranged between 68%-99%.The minority of studies (n=11) showed a low risk of biases in all domains, and 13 studies (31.0%) low risk for concerns regarding applicability.The accuracy of caries classification models varied, i.e. 71% to 96% on intra-oral photographs, 82% to 99.2% on periapical radiographs, 87.6% to 95.4% on bitewing radiographs, 68.0% to 78.0% on near-infrared transillumination images, 88.7% to 95.2% on optical coherence tomography images, and 86.1% to 96.1% on panoramic radiographs.Pooled diagnostic odds ratios varied from 2.27 to 32767.For detection and segmentation models, heterogeneity in reporting did not allow useful pooling.Conclusion: An increasing number of studies investigated caries detection using deep learning, with a diverse types of architectures being employed.Reported accuracy seems promising, while study and reporting quality are currently low.Clinical significance: Deep learning models can be considered as an assistant for decisions regarding the presence or absence of carious lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白茶的雪完成签到,获得积分10
1秒前
sbrcpyf完成签到,获得积分10
1秒前
1秒前
2秒前
创创完成签到,获得积分10
2秒前
岑南珍完成签到 ,获得积分10
3秒前
3秒前
大王具足虫完成签到,获得积分0
3秒前
三号技师完成签到,获得积分10
4秒前
5秒前
血小板完成签到,获得积分10
5秒前
无辜不言发布了新的文献求助10
5秒前
自然怀梦完成签到,获得积分10
5秒前
xiangpimei完成签到 ,获得积分10
6秒前
陶渊明发布了新的文献求助10
7秒前
wangzai111完成签到,获得积分10
7秒前
7秒前
7秒前
石翎完成签到,获得积分10
7秒前
小马甲应助zhc990807采纳,获得10
7秒前
Autin完成签到,获得积分10
7秒前
追梦大鹏完成签到,获得积分10
8秒前
dy发布了新的文献求助10
8秒前
kytyzx完成签到,获得积分10
9秒前
9秒前
杂化轨道退役研究员完成签到,获得积分10
9秒前
淡定完成签到,获得积分20
9秒前
浅尝离白应助鲁滨逊采纳,获得10
10秒前
自觉南风完成签到,获得积分10
10秒前
sln完成签到,获得积分10
10秒前
FYm发布了新的文献求助10
11秒前
科研通AI2S应助苦命研究采纳,获得10
11秒前
minibearQ完成签到,获得积分10
11秒前
11秒前
孔乾完成签到,获得积分10
11秒前
湘之灵若完成签到 ,获得积分10
12秒前
maz123456完成签到,获得积分10
12秒前
余杰完成签到,获得积分10
12秒前
12秒前
VanessaW完成签到,获得积分10
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793801
关于积分的说明 7807889
捐赠科研通 2450113
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350