Deep learning for caries detection: A systematic review

透照 射线照相术 人工智能 光学相干层析成像 医学 深度学习 梅德林 诊断准确性 可靠性(半导体) 牙科 医学物理学 计算机科学 口腔正畸科 放射科 病理 物理 功率(物理) 量子力学 法学 政治学
作者
Hossein Mohammad‐Rahimi,Saeed Reza Motamedian,Mohammad Hossein Rohban,Joachim Krois,Sergio Uribe,Erfan Mahmoudinia,Rata Rokhshad,Mohadeseh Nadimi,Falk Schwendicke
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:122: 104115-104115 被引量:228
标识
DOI:10.1016/j.jdent.2022.104115
摘要

Objectives: Detecting caries lesions is challenging for dentists, and deep learning models may help practitioners to increase accuracy and reliability.We aimed to systematically review deep learning studies on caries detection.Data: We selected diagnostic accuracy studies that used deep learning models on dental imagery (including radiographs, photographs, optical coherence tomography images, near-infrared light transillumination images).The latest version of the quality assessment tool for diagnostic accuracy studies (QUADAS-2) tool was used for risk of bias assessment.Meta-analysis was not performed due to heterogeneity in the studies methods and their performance measurements.Sources: Databases (Medline via PubMed, Google Scholar, Scopus, Embase) and a repository (ArXiv) were screened for publications published after 2010, without any limitation on language.Study selection: From 252 potentially eligible references, 48 studies were assessed full-text and 42 included, using classification (n=26), object detection (n=6), or segmentation models (n=10).A wide range of performance metrics was used; image, object or pixel accuracy ranged between 68%-99%.The minority of studies (n=11) showed a low risk of biases in all domains, and 13 studies (31.0%) low risk for concerns regarding applicability.The accuracy of caries classification models varied, i.e. 71% to 96% on intra-oral photographs, 82% to 99.2% on periapical radiographs, 87.6% to 95.4% on bitewing radiographs, 68.0% to 78.0% on near-infrared transillumination images, 88.7% to 95.2% on optical coherence tomography images, and 86.1% to 96.1% on panoramic radiographs.Pooled diagnostic odds ratios varied from 2.27 to 32767.For detection and segmentation models, heterogeneity in reporting did not allow useful pooling.Conclusion: An increasing number of studies investigated caries detection using deep learning, with a diverse types of architectures being employed.Reported accuracy seems promising, while study and reporting quality are currently low.Clinical significance: Deep learning models can be considered as an assistant for decisions regarding the presence or absence of carious lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助Shixin采纳,获得10
1秒前
花花完成签到,获得积分10
1秒前
2秒前
Liu发布了新的文献求助10
3秒前
斯文败类应助张张采纳,获得10
3秒前
4秒前
jlhnt完成签到 ,获得积分10
4秒前
糍粑发布了新的文献求助10
4秒前
guoguo完成签到,获得积分10
5秒前
7秒前
无辜靖巧完成签到 ,获得积分10
9秒前
充电宝应助6666采纳,获得10
9秒前
9秒前
光亮的依凝完成签到,获得积分10
9秒前
BallQ完成签到,获得积分10
9秒前
zzj完成签到,获得积分10
9秒前
FashionBoy应助Roachw采纳,获得10
10秒前
姜恒发布了新的文献求助10
10秒前
benzene完成签到 ,获得积分10
10秒前
yanzilin发布了新的文献求助10
10秒前
苏素肃发布了新的文献求助10
11秒前
qifei完成签到 ,获得积分10
11秒前
舍瓦完成签到,获得积分10
12秒前
why完成签到,获得积分10
12秒前
木林森发布了新的文献求助10
12秒前
烂漫凡柔发布了新的文献求助10
12秒前
传奇3应助22采纳,获得10
13秒前
胡晓平完成签到,获得积分10
14秒前
Summer完成签到,获得积分10
14秒前
鲤鱼雨泽完成签到,获得积分10
14秒前
wzhnb完成签到,获得积分10
15秒前
nojego完成签到,获得积分10
15秒前
倩倩完成签到,获得积分10
15秒前
hhh完成签到 ,获得积分10
15秒前
苏苏完成签到 ,获得积分10
15秒前
ShanYexia完成签到,获得积分10
16秒前
星辰大海应助轻松豌豆采纳,获得10
16秒前
xyj完成签到,获得积分10
16秒前
上官若男应助jinzhituoyan采纳,获得10
17秒前
李健的小迷弟应助wzhnb采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685887
关于积分的说明 14840244
捐赠科研通 4675397
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144