Deep learning for caries detection: A systematic review

透照 射线照相术 人工智能 光学相干层析成像 医学 深度学习 梅德林 诊断准确性 可靠性(半导体) 牙科 医学物理学 计算机科学 口腔正畸科 放射科 病理 物理 功率(物理) 量子力学 法学 政治学
作者
Hossein Mohammad‐Rahimi,Saeed Reza Motamedian,Mohammad Hossein Rohban,Joachim Krois,Sergio Uribe,Erfan Mahmoudinia,Rata Rokhshad,Mohadeseh Nadimi,Falk Schwendicke
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:122: 104115-104115 被引量:193
标识
DOI:10.1016/j.jdent.2022.104115
摘要

Objectives: Detecting caries lesions is challenging for dentists, and deep learning models may help practitioners to increase accuracy and reliability.We aimed to systematically review deep learning studies on caries detection.Data: We selected diagnostic accuracy studies that used deep learning models on dental imagery (including radiographs, photographs, optical coherence tomography images, near-infrared light transillumination images).The latest version of the quality assessment tool for diagnostic accuracy studies (QUADAS-2) tool was used for risk of bias assessment.Meta-analysis was not performed due to heterogeneity in the studies methods and their performance measurements.Sources: Databases (Medline via PubMed, Google Scholar, Scopus, Embase) and a repository (ArXiv) were screened for publications published after 2010, without any limitation on language.Study selection: From 252 potentially eligible references, 48 studies were assessed full-text and 42 included, using classification (n=26), object detection (n=6), or segmentation models (n=10).A wide range of performance metrics was used; image, object or pixel accuracy ranged between 68%-99%.The minority of studies (n=11) showed a low risk of biases in all domains, and 13 studies (31.0%) low risk for concerns regarding applicability.The accuracy of caries classification models varied, i.e. 71% to 96% on intra-oral photographs, 82% to 99.2% on periapical radiographs, 87.6% to 95.4% on bitewing radiographs, 68.0% to 78.0% on near-infrared transillumination images, 88.7% to 95.2% on optical coherence tomography images, and 86.1% to 96.1% on panoramic radiographs.Pooled diagnostic odds ratios varied from 2.27 to 32767.For detection and segmentation models, heterogeneity in reporting did not allow useful pooling.Conclusion: An increasing number of studies investigated caries detection using deep learning, with a diverse types of architectures being employed.Reported accuracy seems promising, while study and reporting quality are currently low.Clinical significance: Deep learning models can be considered as an assistant for decisions regarding the presence or absence of carious lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟色晚空完成签到,获得积分10
1秒前
222333发布了新的文献求助10
2秒前
2秒前
陈总002完成签到,获得积分10
3秒前
3秒前
3秒前
小蘑菇应助科研顺利采纳,获得10
4秒前
KKKK发布了新的文献求助10
4秒前
4秒前
小青椒应助zhang采纳,获得20
4秒前
龙之介完成签到,获得积分10
5秒前
斯文败类应助大力的海蓝采纳,获得10
5秒前
5秒前
舒心的寻琴完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
cicytjsxjr发布了新的文献求助10
7秒前
zero发布了新的文献求助10
7秒前
8秒前
8秒前
零食宝发布了新的文献求助10
8秒前
伊卡洛斯发布了新的文献求助10
8秒前
典雅的羿发布了新的文献求助10
9秒前
李爱国应助Qinghen采纳,获得10
9秒前
9秒前
NexusExplorer应助安安采纳,获得10
9秒前
9秒前
saywhy发布了新的文献求助10
10秒前
共享精神应助乐唔采纳,获得10
10秒前
哭泣朝雪完成签到,获得积分10
10秒前
yiyi完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
mys完成签到,获得积分10
11秒前
241867825发布了新的文献求助10
11秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012