亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for caries detection: A systematic review

透照 射线照相术 人工智能 光学相干层析成像 医学 深度学习 梅德林 诊断准确性 可靠性(半导体) 牙科 医学物理学 计算机科学 口腔正畸科 放射科 病理 物理 功率(物理) 量子力学 法学 政治学
作者
Hossein Mohammad‐Rahimi,Saeed Reza Motamedian,Mohammad Hossein Rohban,Joachim Krois,Sergio Uribe,Erfan Mahmoudinia,Rata Rokhshad,Mohadeseh Nadimi,Falk Schwendicke
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:122: 104115-104115 被引量:193
标识
DOI:10.1016/j.jdent.2022.104115
摘要

Objectives: Detecting caries lesions is challenging for dentists, and deep learning models may help practitioners to increase accuracy and reliability.We aimed to systematically review deep learning studies on caries detection.Data: We selected diagnostic accuracy studies that used deep learning models on dental imagery (including radiographs, photographs, optical coherence tomography images, near-infrared light transillumination images).The latest version of the quality assessment tool for diagnostic accuracy studies (QUADAS-2) tool was used for risk of bias assessment.Meta-analysis was not performed due to heterogeneity in the studies methods and their performance measurements.Sources: Databases (Medline via PubMed, Google Scholar, Scopus, Embase) and a repository (ArXiv) were screened for publications published after 2010, without any limitation on language.Study selection: From 252 potentially eligible references, 48 studies were assessed full-text and 42 included, using classification (n=26), object detection (n=6), or segmentation models (n=10).A wide range of performance metrics was used; image, object or pixel accuracy ranged between 68%-99%.The minority of studies (n=11) showed a low risk of biases in all domains, and 13 studies (31.0%) low risk for concerns regarding applicability.The accuracy of caries classification models varied, i.e. 71% to 96% on intra-oral photographs, 82% to 99.2% on periapical radiographs, 87.6% to 95.4% on bitewing radiographs, 68.0% to 78.0% on near-infrared transillumination images, 88.7% to 95.2% on optical coherence tomography images, and 86.1% to 96.1% on panoramic radiographs.Pooled diagnostic odds ratios varied from 2.27 to 32767.For detection and segmentation models, heterogeneity in reporting did not allow useful pooling.Conclusion: An increasing number of studies investigated caries detection using deep learning, with a diverse types of architectures being employed.Reported accuracy seems promising, while study and reporting quality are currently low.Clinical significance: Deep learning models can be considered as an assistant for decisions regarding the presence or absence of carious lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助春和景明采纳,获得10
2秒前
Fletcherschwann完成签到,获得积分10
8秒前
9秒前
14秒前
15秒前
18秒前
20秒前
tan发布了新的文献求助10
20秒前
22秒前
清脆元冬发布了新的文献求助10
23秒前
FashionBoy应助闫恒采纳,获得10
23秒前
明理夏波完成签到,获得积分10
25秒前
30秒前
33秒前
明理夏波发布了新的文献求助10
35秒前
39秒前
风趣雅青发布了新的文献求助30
41秒前
酷波er应助科研通管家采纳,获得30
43秒前
Criminology34应助科研通管家采纳,获得10
43秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Jasper应助香菜芋头采纳,获得10
44秒前
LuoLuo完成签到,获得积分10
48秒前
张匀继完成签到,获得积分10
49秒前
56秒前
丘比特应助西内!卡Q因采纳,获得10
59秒前
1分钟前
1分钟前
清脆元冬完成签到,获得积分20
1分钟前
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助Zola采纳,获得10
1分钟前
hankongli完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
伊萨卡发布了新的文献求助30
1分钟前
1分钟前
科研通AI6应助霜降采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194849
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447015
邀请新用户注册赠送积分活动 1438318
关于科研通互助平台的介绍 1415157