Uncertainty-Guided Voxel-Level Supervised Contrastive Learning for Semi-Supervised Medical Image Segmentation

过度拟合 计算机科学 人工智能 半监督学习 模式识别(心理学) 特征学习 机器学习 分割 监督学习 特征(语言学) 一致性(知识库) 体素 人工神经网络 语言学 哲学
作者
Yu Hua,Xin Shu,Zizhou Wang,Lei Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (04) 被引量:31
标识
DOI:10.1142/s0129065722500162
摘要

Semi-supervised learning reduces overfitting and facilitates medical image segmentation by regularizing the learning of limited well-annotated data with the knowledge provided by a large amount of unlabeled data. However, there are many misuses and underutilization of data in conventional semi-supervised methods. On the one hand, the model will deviate from the empirical distribution under the training of numerous unlabeled data. On the other hand, the model treats labeled and unlabeled data differently and does not consider inter-data information. In this paper, a semi-supervised method is proposed to exploit unlabeled data to further narrow the gap between the semi-supervised model and its fully-supervised counterpart. Specifically, the architecture of the proposed method is based on the mean-teacher framework, and the uncertainty estimation module is improved to impose constraints of consistency and guide the selection of feature representation vectors. Notably, a voxel-level supervised contrastive learning module is devised to establish a contrastive relationship between feature representation vectors, whether from labeled or unlabeled data. The supervised manner ensures that the network learns the correct knowledge, and the dense contrastive relationship further extracts information from unlabeled data. The above overcomes data misuse and underutilization in semi-supervised frameworks. Moreover, it favors the feature representation with intra-class compactness and inter-class separability and gains extra performance. Extensive experimental results on the left atrium dataset from Atrial Segmentation Challenge demonstrate that the proposed method has superior performance over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Reginannnn完成签到,获得积分10
刚刚
机智的觅风完成签到,获得积分10
1秒前
luqian完成签到,获得积分10
1秒前
1秒前
COCO完成签到 ,获得积分10
1秒前
rorocris完成签到,获得积分10
1秒前
hodge完成签到,获得积分10
1秒前
俞孤风完成签到,获得积分10
2秒前
复杂嚓茶发布了新的文献求助10
2秒前
Mint发布了新的文献求助10
2秒前
缓冲中完成签到 ,获得积分10
2秒前
啦啦啦啦啦完成签到 ,获得积分10
3秒前
3123939715完成签到,获得积分10
3秒前
nininidoc完成签到,获得积分10
3秒前
天真的冬寒完成签到,获得积分20
3秒前
失眠万仇发布了新的文献求助10
3秒前
luqian发布了新的文献求助10
4秒前
5秒前
11111完成签到,获得积分10
5秒前
6秒前
Starry完成签到 ,获得积分10
6秒前
朱gui完成签到,获得积分10
7秒前
冷艳小刺猬完成签到 ,获得积分10
7秒前
zy完成签到,获得积分10
7秒前
刘振岁完成签到,获得积分10
8秒前
平淡惋清完成签到,获得积分10
8秒前
gwbk完成签到 ,获得积分10
8秒前
道阻且长发布了新的文献求助10
8秒前
8秒前
鹰少完成签到,获得积分10
8秒前
兔大夫完成签到 ,获得积分10
9秒前
qq完成签到,获得积分10
10秒前
搜集达人应助Skilixta采纳,获得10
10秒前
山崎一Giao完成签到 ,获得积分10
10秒前
NexusExplorer应助聪明梦容采纳,获得10
10秒前
10秒前
10秒前
THEO发布了新的文献求助10
11秒前
胡萝卜完成签到 ,获得积分10
11秒前
草莓大王完成签到,获得积分10
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388033
求助须知:如何正确求助?哪些是违规求助? 4509993
关于积分的说明 14033613
捐赠科研通 4420842
什么是DOI,文献DOI怎么找? 2428496
邀请新用户注册赠送积分活动 1421139
关于科研通互助平台的介绍 1400326