Uncertainty-Guided Voxel-Level Supervised Contrastive Learning for Semi-Supervised Medical Image Segmentation

过度拟合 计算机科学 人工智能 半监督学习 模式识别(心理学) 特征学习 机器学习 分割 监督学习 特征(语言学) 一致性(知识库) 体素 人工神经网络 语言学 哲学
作者
Yu Hua,Xin Shu,Zizhou Wang,Lei Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (04) 被引量:31
标识
DOI:10.1142/s0129065722500162
摘要

Semi-supervised learning reduces overfitting and facilitates medical image segmentation by regularizing the learning of limited well-annotated data with the knowledge provided by a large amount of unlabeled data. However, there are many misuses and underutilization of data in conventional semi-supervised methods. On the one hand, the model will deviate from the empirical distribution under the training of numerous unlabeled data. On the other hand, the model treats labeled and unlabeled data differently and does not consider inter-data information. In this paper, a semi-supervised method is proposed to exploit unlabeled data to further narrow the gap between the semi-supervised model and its fully-supervised counterpart. Specifically, the architecture of the proposed method is based on the mean-teacher framework, and the uncertainty estimation module is improved to impose constraints of consistency and guide the selection of feature representation vectors. Notably, a voxel-level supervised contrastive learning module is devised to establish a contrastive relationship between feature representation vectors, whether from labeled or unlabeled data. The supervised manner ensures that the network learns the correct knowledge, and the dense contrastive relationship further extracts information from unlabeled data. The above overcomes data misuse and underutilization in semi-supervised frameworks. Moreover, it favors the feature representation with intra-class compactness and inter-class separability and gains extra performance. Extensive experimental results on the left atrium dataset from Atrial Segmentation Challenge demonstrate that the proposed method has superior performance over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
悦子的猫酒馆完成签到,获得积分20
1秒前
Dskelf完成签到,获得积分10
2秒前
子清发布了新的文献求助10
2秒前
啤酒半斤发布了新的文献求助10
2秒前
喜宝完成签到 ,获得积分10
3秒前
4秒前
5秒前
Jasmine完成签到,获得积分10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
Jasper应助石家豪采纳,获得30
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得30
8秒前
顾矜应助Vanness采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
可不乐完成签到,获得积分10
8秒前
xzn1123应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
小新应助科研通管家采纳,获得10
9秒前
xzn1123应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337