Uncertainty-Guided Voxel-Level Supervised Contrastive Learning for Semi-Supervised Medical Image Segmentation

过度拟合 计算机科学 人工智能 半监督学习 模式识别(心理学) 特征学习 机器学习 分割 监督学习 特征(语言学) 一致性(知识库) 体素 人工神经网络 语言学 哲学
作者
Yu Hua,Xin Shu,Zizhou Wang,Lei Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (04) 被引量:27
标识
DOI:10.1142/s0129065722500162
摘要

Semi-supervised learning reduces overfitting and facilitates medical image segmentation by regularizing the learning of limited well-annotated data with the knowledge provided by a large amount of unlabeled data. However, there are many misuses and underutilization of data in conventional semi-supervised methods. On the one hand, the model will deviate from the empirical distribution under the training of numerous unlabeled data. On the other hand, the model treats labeled and unlabeled data differently and does not consider inter-data information. In this paper, a semi-supervised method is proposed to exploit unlabeled data to further narrow the gap between the semi-supervised model and its fully-supervised counterpart. Specifically, the architecture of the proposed method is based on the mean-teacher framework, and the uncertainty estimation module is improved to impose constraints of consistency and guide the selection of feature representation vectors. Notably, a voxel-level supervised contrastive learning module is devised to establish a contrastive relationship between feature representation vectors, whether from labeled or unlabeled data. The supervised manner ensures that the network learns the correct knowledge, and the dense contrastive relationship further extracts information from unlabeled data. The above overcomes data misuse and underutilization in semi-supervised frameworks. Moreover, it favors the feature representation with intra-class compactness and inter-class separability and gains extra performance. Extensive experimental results on the left atrium dataset from Atrial Segmentation Challenge demonstrate that the proposed method has superior performance over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助小汤啦啦啦采纳,获得10
刚刚
Don发布了新的文献求助30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
2秒前
凯sa发布了新的文献求助10
4秒前
weizhi完成签到,获得积分10
5秒前
5秒前
万能图书馆应助张发发采纳,获得10
6秒前
CipherSage应助nssm采纳,获得10
7秒前
DNA甲基转移酶完成签到,获得积分10
7秒前
单薄归尘完成签到 ,获得积分10
8秒前
9秒前
1781266发布了新的文献求助20
9秒前
9秒前
juwish完成签到,获得积分10
10秒前
10秒前
不会游泳的鱼完成签到 ,获得积分10
10秒前
圈圈圆了完成签到,获得积分10
12秒前
凯sa完成签到,获得积分20
12秒前
圈圈圆了发布了新的文献求助30
14秒前
研友_8DWkVZ完成签到,获得积分10
14秒前
15秒前
16秒前
18秒前
19秒前
拉长的映阳关注了科研通微信公众号
19秒前
19秒前
21秒前
欣慰立辉发布了新的文献求助10
22秒前
22秒前
nssm发布了新的文献求助10
22秒前
22秒前
隐形曼青应助好好采纳,获得10
25秒前
ZZCrazy发布了新的文献求助10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425