Uncertainty-Guided Voxel-Level Supervised Contrastive Learning for Semi-Supervised Medical Image Segmentation

过度拟合 计算机科学 人工智能 半监督学习 模式识别(心理学) 特征学习 机器学习 分割 监督学习 特征(语言学) 一致性(知识库) 体素 人工神经网络 语言学 哲学
作者
Yu Hua,Xin Shu,Zizhou Wang,Lei Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (04) 被引量:31
标识
DOI:10.1142/s0129065722500162
摘要

Semi-supervised learning reduces overfitting and facilitates medical image segmentation by regularizing the learning of limited well-annotated data with the knowledge provided by a large amount of unlabeled data. However, there are many misuses and underutilization of data in conventional semi-supervised methods. On the one hand, the model will deviate from the empirical distribution under the training of numerous unlabeled data. On the other hand, the model treats labeled and unlabeled data differently and does not consider inter-data information. In this paper, a semi-supervised method is proposed to exploit unlabeled data to further narrow the gap between the semi-supervised model and its fully-supervised counterpart. Specifically, the architecture of the proposed method is based on the mean-teacher framework, and the uncertainty estimation module is improved to impose constraints of consistency and guide the selection of feature representation vectors. Notably, a voxel-level supervised contrastive learning module is devised to establish a contrastive relationship between feature representation vectors, whether from labeled or unlabeled data. The supervised manner ensures that the network learns the correct knowledge, and the dense contrastive relationship further extracts information from unlabeled data. The above overcomes data misuse and underutilization in semi-supervised frameworks. Moreover, it favors the feature representation with intra-class compactness and inter-class separability and gains extra performance. Extensive experimental results on the left atrium dataset from Atrial Segmentation Challenge demonstrate that the proposed method has superior performance over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助无所谓的啦采纳,获得10
1秒前
CipherSage应助无所谓的啦采纳,获得10
1秒前
爆米花应助无所谓的啦采纳,获得10
1秒前
斯文败类应助无所谓的啦采纳,获得10
1秒前
充电宝应助无所谓的啦采纳,获得10
1秒前
大个应助无所谓的啦采纳,获得10
1秒前
赘婿应助无所谓的啦采纳,获得10
1秒前
Ava应助无所谓的啦采纳,获得10
1秒前
普通市民完成签到 ,获得积分10
1秒前
科研通AI6应助无所谓的啦采纳,获得10
1秒前
Lucien完成签到,获得积分10
2秒前
陈小瑜完成签到,获得积分10
3秒前
Maykl发布了新的文献求助10
3秒前
5秒前
5秒前
Mandy完成签到 ,获得积分10
5秒前
慢慢人发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
爆米花应助liu采纳,获得10
6秒前
Zz发布了新的文献求助10
6秒前
y1j完成签到,获得积分10
7秒前
9秒前
10秒前
11秒前
大个应助Zz采纳,获得10
12秒前
12秒前
123完成签到 ,获得积分10
13秒前
14秒前
遨游的人发布了新的文献求助10
14秒前
禾页完成签到 ,获得积分10
15秒前
16秒前
Yuan发布了新的文献求助10
17秒前
好问题发布了新的文献求助10
17秒前
NexusExplorer应助临江仙采纳,获得10
17秒前
17秒前
Elite完成签到 ,获得积分10
18秒前
万木春发布了新的文献求助10
18秒前
19秒前
慢慢人完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419649
求助须知:如何正确求助?哪些是违规求助? 4534895
关于积分的说明 14147178
捐赠科研通 4451527
什么是DOI,文献DOI怎么找? 2441782
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410617