酮发生
内分泌学
内科学
脂肪肝
酮体
脂肪变性
生酮饮食
生物
FGF21型
脂质代谢
β氧化
医学
新陈代谢
疾病
癫痫
受体
神经科学
成纤维细胞生长因子
作者
Shaza Asif,Ri Youn Kim,Thet Fatica,Jordan Sim,Xiaoling Zhao,Yena Oh,Alix Denoncourt,Angela Cheung,Michael Downey,Erin E. Mulvihill,Kyoung-Han Kim
标识
DOI:10.1016/j.molmet.2022.101494
摘要
Aberrant ketogenesis is correlated with the degree of steatosis in non-alcoholic fatty liver disease (NAFLD) patients, and an inborn error of ketogenesis (mitochondrial HMG-CoA synthase deficiency) is commonly associated with the development of the fatty liver. Here we aimed to determine the impact of Hmgcs2-mediated ketogenesis and its modulations on the development and treatment of fatty liver disease.Loss- and gain-of-ketogenic function models, achieved by Hmgcs2 knockout and overexpression, respectively, were utilized to investigate the role of ketogenesis in the hepatic lipid accumulation during postnatal development and in a high-fat diet-induced NAFLD mouse model.Ketogenic function was decreased in NAFLD mice with a reduction in Hmgcs2 expression. Mice lacking Hmgcs2 developed spontaneous fatty liver phenotype during postnatal development, which was rescued by a shift to a low-fat dietary composition via early weaning. Hmgcs2 heterozygous adult mice, which exhibited lower ketogenic activity, were more susceptible to diet-induced NAFLD development, whereas HMGCS2 overexpression in NAFLD mice improved hepatosteatosis and glucose homeostasis.Our study adds new knowledge to the field of ketone body metabolism and shows that Hmgcs2-mediated ketogenesis modulates hepatic lipid regulation under a fat-enriched nutritional environment. The regulation of hepatic ketogenesis may be a viable therapeutic strategy in the prevention and treatment of hepatosteatosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI