钙显像
显微镜
生物
镜头(地质)
海马体
视皮层
显微镜
内嗅皮质
皮质(解剖学)
光学成像
光学
钙
神经科学
材料科学
物理
古生物学
冶金
作者
Weijian Zong,Horst A. Obenhaus,Emilie Ranheim Skytøen,Hanna Eneqvist,Nienke L. de Jong,Ruben Vale,Marina Jorge,May‐Britt Moser,Edvard I Moser
出处
期刊:Cell
[Elsevier]
日期:2022-03-01
卷期号:185 (7): 1240-1256.e30
被引量:177
标识
DOI:10.1016/j.cell.2022.02.017
摘要
We developed a miniaturized two-photon microscope (MINI2P) for fast, high-resolution, multiplane calcium imaging of over 1,000 neurons at a time in freely moving mice. With a microscope weight below 3 g and a highly flexible connection cable, MINI2P allowed stable imaging with no impediment of behavior in a variety of assays compared to untethered, unimplanted animals. The improved cell yield was achieved through a optical system design featuring an enlarged field of view (FOV) and a microtunable lens with increased z-scanning range and speed that allows fast and stable imaging of multiple interleaved planes, as well as 3D functional imaging. Successive imaging across multiple, adjacent FOVs enabled recordings from more than 10,000 neurons in the same animal. Large-scale proof-of-principle data were obtained from cell populations in visual cortex, medial entorhinal cortex, and hippocampus, revealing spatial tuning of cells in all areas.
科研通智能强力驱动
Strongly Powered by AbleSci AI