空化
材料科学
体积热力学
流量(数学)
机械
机械工程
工程类
热力学
物理
作者
Yujia Zhang,Xiumei Liu,Beibei Li,Shenzhen Sun,Jiajia Peng,Weiwei Liu,Jie He,Wei Li
标识
DOI:10.1016/j.flowmeasinst.2022.102173
摘要
Cavitation is the main failure mode of coal liquefaction regulating valve, which seriously limits the service life of the regulating valve. In order to restrain cavitation in the regulating valve, a bio-inspired anti-cavitation structure inspired by the red willow of valve core is proposed. Distributions of pressure, velocity and vapor volume fraction in the bionic valve under different openings (30%, 40%, 50%, and 60%) and inlet pressures (2.0MPa, 3.0MPa, 4.0MPa, and 5.0MPa) are discussed. In addition, the parameters of bionic valve structure are optimized using NSGA-II algorithm, the field synergy principle is applied to evaluate the flow field optimization in the bionic valve. The results show that the cavitation area and cavitation length in these bionic structures are reduced significantly compared with the traditional smooth structure. And the anti-cavitation performance of the trench structure is the best, when the inlet pressure is 3 MPa and the opening is 30%, the vapor volume is 0.10 mm3, the vapor volume is reduced by 98.07% compared with traditional smooth structure. Convex hull structure is the second. When the inlet pressure is 5.0 MPa, the vapor volume of the traditional smooth structure is as high as 148 mm3, and the vapor volume of the convex hull structure is 35 mm3, the vapor volume of the trench structure is 19 mm3. Through the field synergy theory to evaluate the internal flow field, it is found that the effective viscosity coefficient in the traditional smooth structure regulating valve varies from 0.7 to 1.2, that of the bionic trench valve changes from 0.1 to 0.5, both the flow resistance and energy consumption in the trench structure valve are reduced. It is proved that the bionic trench structure of the valve core can effectively improve anti cavitation performance and optimize the internal flow resistance of the flow field, which is of great significance to the optimal design of the control valve.
科研通智能强力驱动
Strongly Powered by AbleSci AI