亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Orthogonal matching pursuit-based feature selection for motor-imagery EEG signal classification

模式识别(心理学) 人工智能 小波 匹配追踪 计算机科学 特征提取 熵(时间箭头) 自回归模型 运动表象 特征选择 小波变换 滑动窗口协议 脑电图 脑-机接口 数学 统计 窗口(计算) 压缩传感 心理学 物理 量子力学 精神科 操作系统
作者
Ranjit Chatterjee,Ankita Chatterjee
出处
期刊:International journal of computer applications in technology [Inderscience Enterprises Ltd.]
卷期号:64 (4): 403-403 被引量:2
标识
DOI:10.1504/ijcat.2020.112686
摘要

This paper focuses on a framework that uses a small number of features to obtain high-quality classification accuracy of left/right-hand movement motor-imagery EEG signal. Motor-imagery EEG signal has been filtered, and suitable features are extracted using a temporal sliding window-based approach. These extracted features from overlapping and non-overlapping approaches are further compared based on three different types of feature extraction techniques: band power, wavelet energy entropy, and adaptive autoregressive model. The overlapping segments with wavelet energy entropy provide the best classification accuracy over other alternatives. The obtained classification accuracy is 91.43%, the highest ever reported accuracy for BCI Competition II data set III. Subsequently, Orthogonal Matching Pursuit (OMP) technique is used to select the subset of most discriminating features from the entire feature-set. It reduces the computation cost but still retains the quality of the classification results with only 1.43% information loss (that is, 90% classification accuracy), whereas the features-set size reduction is 75% for the same. It is found that the wavelet energy entropy technique performs consistently well in all the variants of our experiments and obtains a mean accuracy difference of 0.95% only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雄壮的小妞完成签到,获得积分10
2秒前
28秒前
Ricardo完成签到 ,获得积分10
37秒前
不器完成签到 ,获得积分10
44秒前
47秒前
49秒前
ltttyy发布了新的文献求助10
53秒前
燕小冷完成签到 ,获得积分10
58秒前
zz完成签到 ,获得积分10
1分钟前
lwm不想看文献完成签到 ,获得积分10
1分钟前
ltttyy完成签到,获得积分10
1分钟前
1分钟前
激动的晓筠完成签到 ,获得积分10
1分钟前
科研通AI6应助MOMO采纳,获得10
1分钟前
文艺的枫叶完成签到 ,获得积分10
1分钟前
1分钟前
SCI发布了新的文献求助10
1分钟前
科研通AI6应助MOMO采纳,获得10
1分钟前
whj完成签到 ,获得积分10
1分钟前
SCI完成签到,获得积分10
1分钟前
1分钟前
能干的人完成签到,获得积分10
2分钟前
科研通AI6应助MOMO采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
fge完成签到,获得积分10
2分钟前
务实擎汉发布了新的文献求助10
2分钟前
2分钟前
MOMO发布了新的文献求助10
3分钟前
MchemG应助小天采纳,获得10
3分钟前
呜呜吴完成签到,获得积分10
3分钟前
靓丽的善斓完成签到 ,获得积分10
3分钟前
MOMO发布了新的文献求助10
3分钟前
MOMO发布了新的文献求助10
4分钟前
思源应助务实擎汉采纳,获得20
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459093
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297231
捐赠科研通 4489961
什么是DOI,文献DOI怎么找? 2459447
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424585